
 

 
 

 

 

 
 

 

 

 

Coordinator name: Prof. Marios POLYCARPOU 

Coordinator email: mpolycar@ucy.ac.cy 

Project Name: Disaster Management Artificial Intelligence Knowledge Network 

Acronym: ARTION 

Grant Agreement: 101017763 

Project website: https://www2.kios.ucy.ac.cy/ARTION/ 

Version: 1.0 

Dissemination level: Public  

 

  

 

 

 

 

DELIVERABLE 4.1 

Training Manual 

 

The project has received funding from the European Union’s Call for proposals in the 
field of Civil Protection under the Union Civil Protection Knowledge Network under 
grant agreement 101017763. 

The content of this document represents the views of the project consortium only and 
is their sole responsibility. The European Commission does not accept any responsibil-
ity for use that may be made of the information it contains. 

Ref. Ares(2021)4264998 - 30/06/2021



 

 
 

2 

 

Contents 

PREFACE ............................................................................................................................................. 3 

1. INTRODUCTION ........................................................................................................................... 4 

2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE .............................................................................. 5 

2.1. MACHINE LEARNING ......................................................................................................................... 5 
2.1.1. Supervised Learning ................................................................................................................. 6 
2.1.2. Unsupervised Learning............................................................................................................. 6 
2.1.3. Supervised Vs. Unsupervised Learning .................................................................................... 7 
2.1.4. Reinforcement Learning ........................................................................................................... 7 
2.1.5. Online Machine Learning ......................................................................................................... 8 
2.1.6. Incremental Learning ............................................................................................................... 8 
2.1.7. Artificial Neural Networks ....................................................................................................... 9 

3. ARTIFICIAL INTELLIGENCE IN DISASTER MANAGEMENT .............................................................. 10 

3.1. AI AND THE STAGES OF DISASTER MANAGEMENT ................................................................................. 10 
3.2. PREREQUISITES FOR EMPLOYING AI IN DISASTER MANAGEMENT ............................................................. 10 

3.2.1. Computing Power and Storage .............................................................................................. 11 
3.2.2. Input Data .............................................................................................................................. 11 
3.2.3. AI Algorithms ......................................................................................................................... 12 

3.3. AI-POWERED AUTONOMOUS ROBOT DEVICES ...................................................................................... 14 
3.4. COMPUTER VISION TECHNOLOGIES .................................................................................................... 14 
3.5. MODELLING OF NATURAL DISASTERS .................................................................................................. 15 

3.5.1. Wildfire modelling ................................................................................................................. 15 
3.5.2. Flood modelling ..................................................................................................................... 17 

3.6. APPLICATIONS OF AI IN DISASTER MANAGEMENT ................................................................................. 19 
3.6.1. Air Quality monitoring using UAVs ........................................................................................ 19 
3.6.2. Calculation of burned area index using UAVs ........................................................................ 21 
3.6.3. Persons Detection and Tracking using UAVs ......................................................................... 22 
3.6.4. Monitoring Water Contamination Events using UAVs .......................................................... 24 
3.6.5. Employing Reinforcement Learning in Disaster Management .............................................. 25 

4. TESTING AND EVALUATING AI TECHNOLOGIES ........................................................................... 26 

CONCLUDING REMARKS ........................................................................................................................... 28 
 

 

 

 

 

 

 

 

 



 

 
 

3 

 

PREFACE 

This training manual is created within the framework of the activities of the ARTION project. ARTION is 

funded from the European Union’s Call for proposals in the field of Civil Protection under the Union Civil 

Protection Knowledge Network. The main goal of the project is to establish a Disaster Management Arti-

ficial Intelligence Knowledge Network, with the vision to become a world-class network for knowledge 

sharing in the area of Artificial Intelligence (AI) for disaster management that will guide the development 

and use of AI tools by first responders across Europe.  

ARTION is a strategic partnership between the KIOS Research and Innovation Center of Excellence of 

the University of Cyprus that has a strong background in ICT technologies and AI, the University of Lille in 

France with advanced expertise in data analytics, the Space Research Centre of the Polish Academy of 

Sciences, an established first-responders training and advising body. In addition, civil protection agencies 

are part of the project consortium, namely the Cyprus Civil Defence and the Civil Protection of the Auton-

omous Region of Sardinia in Italy.  

One of the four strategic pillars of ARTION is devoted to training and networking aiming to upskill first 

responder stakeholders by exemplifying AI technologies, detailing the data collection and analysis proce-

dures and setting the expectations on what can be achieved by AI tools. The purpose of the training work-

shops is not only to share knowledge on the topic, but in addition to gather, consolidate and assess the 

needs of disaster management actors in order to be used by researchers in the further development of AI 

tools for disaster management. To engage the community and enable further innovations, all the 

knowledge that will be gained will be made available through an Open Knowledge portal created through-

out the project.  

This training manual is structured as follows. First, an introduction aims to highlight the usefulness and 

motivation behind the employment of AI for disaster management (Section 1). Then, an introduction to 

AI aims to provide a brief background on this scientific field (Section 2). A selection of topics on AI for 

disaster management is then presented in the following section (Section 3). A summary of the major 

points on testing and evaluating AI technologies for disaster management is presented in Section 4. This 

last part is very briefly covered in this manual as because of its practical nature it is more appropriately 

presented in the form of a presentation, thus the interested reader may refer to the available slides.   

This manual aims to summarize the main points of the training workshops conducted as part of the 

activities for ARTION. The full set of slides can be accessed online at: https://ucy-my.share-

point.com/:f:/g/personal/mmicha03_ucy_ac_cy/Egvx2-tStjJMiuAeDELeO74Bg94JEgVePoX-

LDONXOWVh7A?e=RSSgKh 
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1. INTRODUCTION 

Millions of people around the world are threatened by natural hazards and the dramatic changes in the 

global climate are likely to worsen the situation. For instance, the global annual average economic loss for 

floods is estimated at US $104 billion1 and over the last decade, deadly floods affected over 1.4 billion 

people.  According to an estimation, wildfires in Australia in 2019-2020 have caused an economic loss of 

approximately US $104 billion, in addition to the loss of life and environmental damage which are irre-

versible, thus beyond calculation.  These severe impacts call for modern societies, specifically for all stake-

holders from first responders to disaster managers and scientists, to put maximum effort in improving 

disaster management.  

During the last few years, Artificial Intelligence (AI) has been recognized as a powerful technology 

that can provide groundbreaking and invaluable tools for all stages of the disaster management cycle, 

from disaster mitigation to disaster recovery. Novel AI technology can support first responders and enable 

“collective intelligence”. The use of data together with advanced AI algorithms can have a transformative 

effect to the operation of first responders as recognized by the European Commission2. For example, in 

the event of a fire, firefighters can gain better situational awareness and make better decisions by having 

access to a visualization of the propagation of a fire, receiving live video from the scene or by having an 

estimation on the number of buildings or people in danger. Real-time deployment of evacuation plans 

taking into account aspects like traffic prediction, disaster evolution, the map of the area, etc. is another 

complex and critical task that can be addressed effectively using AI.  

In fact, AI can be employed in a plethora of disaster events. First of all, it can prove to be a useful 

tool in many different types of disasters. From natural disasters, such as earthquakes, floods, landslides, 

typhoons, tsunamis, to man-made disasters, such as water contamination incidents, explosions, bioter-

rorism incidents, transportation accidents. Additionally, AI algorithms and AI-powered systems can be 

used in various disaster management actions offering different types of support. In particular, AI can be 

used to build: 

 Systems that forecast events in order to take actions before a disaster. 

 Decision-support systems 

 Decision-making systems 

 AI-powered automated robotic devices. 

In addition, from first-line rescuers to administrative authorities, all stakeholders that are involved in the 

cycle of disaster management can take advantage of AI-powered tools.  

Especially the evolution of automated robot devices, such as drones, can revolutionize disaster man-

agement in the years to come as they can easily reach locations that are either unreachable or very dan-

gerous for human responders. In combination with AI algorithms modern robots can not only collect data, 

but they can interpret them and deliver critical information like, for example, whether there are persons 

detected in a certain area. 

                                                           
1 UNISDR, Making Development Sustainable: The Future of Disaster Risk Management. Global Assessment Report on Disaster 
Risk Reduction (2015), www.unisdr.org/we/inform/publications/42809 
 
2 COM(2018) 795 Coordinated Plan on Artificial Intelligence 

http://www.unisdr.org/we/inform/publications/42809
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2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE  

According to the definition of the online Cambridge dictionary, Intelligence is “the ability to learn, under-

stand, and make judgments or have opinions that are based on reason”. Artificial Intelligence (AI) is “the 

branch of computer science that is concerned with the automation of intelligent behavior”3. AI is the sim-

ulation of human intelligence by machines in order to have the ability to understand/discover meaning, 

to learn, to solve problems and to act rationally. To this end, the central principles of AI include perception, 

learning, reasoning, knowledge, planning, and communication.   

 In the present manual we will focus on Machine Learning, a branch of AI that is rather the most 

widely used in the domain of disaster management.  

 

2.1. Machine Learning 

Machine Learning (ML) is a type of AI that provides computers the ability to learn from past experiences 

without being explicitly programmed. A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P, if its performance at the tasks improves with the 

experiences4. Examples of ML from every day life include chess playing, personalization of suggested con-

tent in social media and in the Internet, automatic conversion of speech-to-text, etc. 

 The main branches of ML are depicted in Figure 1 and presented briefly in the following subsec-

tions. 

 

  

                                                           
3 G. F. Luger and W. A. Stubblefield. (1993). Artificial intelligence (2nd ed.): structures and strategies for complex problem-
solving. Benjamin-Cummings Publishing Co., Inc., USA. 

4 T. M. Mitchell. (1997). Machine Learning (1st. ed.). MoGraw-Hill, Inc., USA 

 

Figure 1: The main branches of Machine Learning 
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2.1.1. Supervised Learning 

Supervised Learning uses labelled datasets. These datasets are designed to train algorithms into classifying 

data (classification) or predicting outcomes accurately (regression). Using labeled inputs and outputs, the 

model can measure its accuracy and learn over time. Supervised learning can be separated into two types 

of problems: classification and regression. 

Classification problems use supervised algorithms to accurately assign objects (input data) into 

identified categories based on each object’s characteristics. Classes are called labels or categories and the 

objects (input data) are analyzed into a set of quantifiable characteristics, called features. The selected 

features should be sufficient and appropriately chosen in order to classify objects into the correct cate-

gory. Examples of classification paradigms are the classification of spam in a separate folder from the 

inbox, tumor classification from medical images as benign or malignant, classification of a handwritten 

character as one of the known alphabet characters. Examples of well-known classification algorithms in-

clude support vector machines, decision trees, random forest, neural networks. 

Regression is another type of supervised learning method that understands the relationship be-

tween dependent and independent variables. Regression models predict continuous numerical values 

based on different input data points. The task of the regression algorithm is to find the mapping function 

to map the input variable (x) to the continuous output variable (y). Examples of regression cases include 

the prediction of sales revenue projections for a given business, the prediction of weather based on rec-

orded data, and the prediction of data traffic in a communication network based on previous recorded 

data rates. Well-known regression methods include linear regression, polynomial regression, support vec-

tor regression, decision tree regression, random forest regression. 

 

2.1.2. Unsupervised Learning 

Unsupervised learning uses ML algorithms to analyze and cluster unlabeled data sets. These algorithms 

are intended to discover hidden data patterns with no human intervention. Unsupervised learning models 

are used for three main tasks: clustering, association, and dimensionality reduction. 

Clustering is a data mining technique for grouping unlabeled data into groups, called clusters, 

based on their similarities or differences. Data points in the same cluster are more similar to other data 

points in the same cluster than those in other clusters. Clustering algorithms fall into two broad groups: 

 Hard clustering, where each data point belongs to one cluster 

 Soft clustering, where each data point can belong to more than one clusters. Examples 

include phonemes in speech, which can be modeled as a combination of multiple base 

sounds. 

Clustering examples are the grouping of organisms by genetic information into a taxonomy, grouping of 

YouTube videos in order to produce recommendations for users similar to what they like, grouping of 

areas in a video to discriminate burned and healthy vegetation after a fire. Examples of clustering algo-

rithms are K-means, hierarchical clustering, mean-shift clustering. 
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 Association is an unsupervised learning method that uses different rules to find relationships be-

tween variables in a given dataset. These methods are frequently used for market basket analysis and 

recommendation engines, along the lines of “Customers Who Bought This Item Also Bought” recommen-

dations.  

Dimensionality reduction is a learning technique used when the number of features in a given da-

taset is too high. It reduces the number of data dimensions to a manageable size while also preserving the 

data integrity. Often, this technique is used in the preprocessing data stage, such as when auto-encoders 

remove noise from visual data to improve picture quality. 

 

2.1.3. Supervised Vs. Unsupervised Learning 

The main distinction between supervised and unsupervised learning is the use of labeled datasets. Super-

vised learning uses labeled input and output data, while an unsupervised learning algorithm does not. In 

supervised learning the algorithm “learns” from a training dataset by iteratively making predictions on the 

data and adjusting for the correct answer. For example, a supervised learning algorithm can be trained 

with forest fire image samples to learn how to detect smoke and fire from a standard camera. While 

supervised learning models tend to be more accurate than unsupervised learning models, they require 

upfront human intervention to label the data appropriately. For example, a supervised learning model can 

predict how long your commute will be based on the time of day, weather conditions and so on. But first, 

you have to train it to know that rainy weather extends the driving time. Unsupervised learning models, 

in contrast, work on their own to discover the inherent structure of unlabeled data. Note that they still 

require some human intervention for validating output variables. For example, an unsupervised learning 

model can identify that online visitors often purchase groups of products at the same time.  

 

2.1.4. Reinforcement Learning 

Reinforcement Learning is the science of learning to make decisions from interactions. In particular, the 

reinforcement learning problem involves learning what to do —how to map situations to actions— in 

order to maximize rewards. The learner (agent) is not told which actions to perform, instead it tries out 

actions to discover the reward they yield and to observe how the environment responds to them. The 

important features of reinforcement learning are trial-and-error learning and delayed reward. The dia-

gram in Figure 2 shows the interactions between the agent and the environment. Beyond the agent and 

the environment, the key elements of a reinforcement learning system are: 

 Policy: the agent’s behaviour function, it is a map from state to action, 

 Reward signal: the agent receives a scalar reward signal upon taking actions, 

 Value function: indicates how good is each state and/or action, it is a prediction of future reward 

 Model: agent’s representation of the environment, it predicts what the environment will do next 

Any real-world problem where an agent must interact with an uncertain environment to achieve a specific 

goal is a potential application of reinforcement learning. Some examples of reinforcement learning are: 

a mobile robot deciding which action to take, develop a computer chess master, manage an investment 
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portfolio, make a humanoid robot walk, and traffic light control. A challenge that appears in reinforce-

ment learning, and not in other kinds of learning, is the tradeoff between exploitation and exploration. 

The agent needs to find a balance between exploiting known actions and exploring new actions. In order 

to receive high rewards, the agent should prefer actions that has tried in the past and found to be effec-

tive in producing high rewards. However, to discover such actions, it needs to try actions it has not se-

lected before. 

 

2.1.5. Online Machine Learning  

When data becomes available in a sequential order, the available data is used to update the best predictor 

for future data at each step, as opposed to batch learning techniques which generate the best predictor 

by learning on the entire training data set at once. Online learning is a common technique used in areas 

of ML where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-

core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt 

to new patterns in the data, or when the data itself is generated as a function of time—e.g., stock price 

prediction. Online learning algorithms may be prone to catastrophic interference, a problem that can be 

addressed by incremental learning approaches. 

 

2.1.6. Incremental Learning  

Incremental learning is a method of ML in which input data is continuously used to extend the existing 

model's knowledge—i.e., to further train the model. It is a dynamic technique of supervised and unsuper-

vised learning and can be applied when training data becomes gradually available over time (like data 

streams) or when its size reaches out of system memory limits (because of hardware constraints). Also, 

applying incremental learning to big data aims to produce faster classification or forecasting times. Many 

traditional ML algorithms inherently support incremental learning. Other algorithms can be adapted to 

Figure 2: Sequential Decision Making 
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facilitate incremental learning. Some incremental learners have built-in some parameter or assumption 

that controls the relevancy of old data, while others, called stable incremental ML algorithms, learn rep-

resentations of the training data that are not even partially forgotten over time.  

 

2.1.7. Artificial Neural Networks  

Artificial Neural Networks (ANNs), or simply Neural Networks (NNs), deserve a dedicated subsection in 

this manual as it is probably the family of most widely employed and most developed methods in the field 

of ML. They can solve a wide variety of problems of supervised and unsupervised learning.  

ANNs are vaguely inspired by the biological neural networks and modelled after the human brain. 

Our brain is based on a complex network of interconnected neurons. Neurons are entities that receive 

information through a set of synapses, perform some sort of calculation, and pass the result to other 

neurons through its outgoing synapses. ANNs are computational algorithms that try to mimic this behav-

iour. They consist of artificial neurons, i.e., a mathematical function that seeks to simulate the behavior 

of a biological neuron. Each neuron receives a set of input signals, combines them in some way and passes 

the information along. An ANN is a complex network of interconnected artificial neurons (Figure 35).  

 

                                                           
5 Vinícius Gonçalves Maltarollo, Káthia Maria Honório and Albérico Borges Ferreira da Silva (2013). Applications of Artificial 
Neural Networks in Chemical Problems, Artificial Neural Networks - Architectures and Applications, Kenji Suzuki, IntechOpen, 
DOI: 10.5772/51275. 

Figure 3: (A) Human neuron (B) Artificial neuron (C) Biological synapse (D) an ANN (Source: 5) 
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ANNs are trained to do specific tasks. They are teached, like children. If you show a child several 

trees, he will then be able to identify other trees. Similarly, if we want our network to tell whether an 

image depicts a cat or a dog, we first feed an image of a cat or a dog to the network. The network then 

does its internal computations and produces and output. This output is compared with the truth. If the 

network thinks it was given a picture of a dog when in reality the picture was of a cat, it will alter the 

behaviour of its neurons slightly (by modifying the weights of the connections) in order to make a better 

prediction of a cat in the future.  

There is a plethora of different types of ANNs. They may differ in the arrangement and degree of 

connectivity of their computational elements, the types of calculations performed within each computa-

tional element, the degree of supervision they receive during training, the determinism of the learning 

process, and the overall learning theory under which they operate. Most common types include feedfor-

ward neural networks, convolutional neural networks and recurrent neural networks. 

 

3. ARTIFICIAL INTELLIGENCE IN DISASTER MANAGEMENT 

 

3.1. AI and the Stages of Disaster Management 

The disaster management cycle is usually divided into four stages: Disaster Mitigation, Disaster Prepared-

ness, Disaster Response and Disaster Recovery. In the line of time, mitigation and preparedness take place 

before the disaster whereas the stages of response and recovery occur after the event. 

 The stage of mitigation includes measures taken to prevent or reduce disasters and prevent or 

reduce their negative effects. Disaster preparedness is about planning an effective response in order to 

minimize the damage caused by a disaster. After or during a disaster (depending on the type of the event), 

disaster response is an action which involves any response to immediate needs, like, search-and rescue 

operations, medical care, provision of food and water, etc. Finally, disaster recovery is about reversing the 

damages that a disaster caused, by building and repairing infrastructures, taking measures to ensure eco-

nomic growth, etc. AI can be used in all four stages of the disaster management cycle. Figure 4 lists some 

examples of operations in which AI can be employed to provide useful tools. 

 

3.2. Prerequisites for Employing AI in Disaster Management 

Although the concept of AI has been introduced several years ago and, in fact, the term “Artificial 

Intelligence” was coined in 1956, it was impossible, mainly due to technological limitations, to address 

applications of AI similar to what scientists develop nowadays. In order to be able to develop practical AI 

applications to handle complex situations we may identify three critical prerequisites, namely: 
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 High Computing Power and Storage 

 Sufficient Input Data 

 AI Algorithms 

 

3.2.1. Computing Power and Storage 

It is evident that especially during the last decade computing devices have evolved drastically. The latest 

computing devices have high computing power and storage capacity, sufficient to process large amounts 

of data and execute complex algorithms fast. By means of AI algorithms and modern computers it is pos-

sible to process large inputs providing human-like interpretations of the situation and perform actions like 

perception, prediction, learning, reasoning, planning, and communication. In fact, the contribution of ma-

chines and AI is not just helpful but imperative for the completion of some tasks as it would be impossible 

for the human brain to receive the amount of information an AI algorithm can analyse in just a couple of 

minutes.  

 

3.2.2. Input Data 

The output of any AI algorithm is as good as the input data set. In particular, the data must be enough in 

terms of quantity and quality (i.e., accuracy). Data was a scarce resource in the past that was difficult to 

produce, costly to store and slow to manipulate. However, we already entered the era of big data. Storing 

and processing large amounts of data has become plausible because of the evolution of modern comput-

ers. In addition, the issue of data collection and availability has become nowadays feasible, as reliable 

devices that can collect large amounts of data are now available at reasonable cost. Examples of such 

devices are drones (Unmanned Aerial Vehicles, UAVs), Autonomous Underwater Vehicles (AUVs), stati-

cally deployed sensors and cameras, wearable devices for first responders equipped with sensors. Addi-

tionally, apart from devices deployed in order to collect specific data, data may be available from other 

sources. For example, videos taken from surveillance cameras may undergo processing for early fire de-

tection. Social media posts, often accompanied by photos, can be used in the case of a disaster event in 

Figure 4: The stages of disaster management and examples of AI operations for each stage. 
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order to extract information about the existence of victims, to evaluate the situation in the affected area 

after the hazard, etc.  

A multiplicity of data sources (e.g. satellite and topographic data, weather-radar, drone sensors) 

that increasingly become readily available can greatly improve situational and needs assessment. Further, 

the wealth of data that first responders are increasingly able to collect (from dedicated sensors and ex-

ternal sources), can prove invaluable in the disaster management cycle (e.g. used for forecasting and rapid 

assessment, informed decision-making and improved efficiency), and result to significant reductions in 

the risk and impact of disasters. The Sendai Framework for Disaster Risk Reduction6 urges for a paradigm 

shift towards a risk-based approach as it emphasizes the need for preventing new risk, reducing existing 

risk and strengthening resilience. The importance of this domain is also illustrated with the recent launch 

of the EU Risk Data Hub, and the Copernicus program, which stimulates the integration of Earth observa-

tion data into service-oriented products for emergency and risk management.   

 

3.2.3. AI Algorithms 

With the evolution of processing power and data availability, the interest of the scientific community for 

the development of practical AI algorithms is naturally increasing during that last few years. This trend is 

evident by observing Figure 57, showing the number of publications found online at the websites of Google 

Scholar and Web of Science, requiring joint presence of both keywords.  

                                                           
6 UNISDR, Sendai Framework for Disaster Risk Reduction 2015-2030 (2015), https://www.undrr.org/publication/sendai-frame-
work-disaster-risk-reduction-2015-2030 
7 Sun, Wenjuan & Bocchini, Paolo & Davison, Brian. (2020). Applications of artificial intelligence for disaster management. 

Natural Hazards. 103. 2631-2689. 10.1007/s11069-020-04124-3. 

Figure 5: The number of online publications on the employment of AI for disaster 
management (Source: 7) 

https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030
https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030
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From the same source7, Figure 6 depicts a diagram pairing the AI tools and disaster management 

applications according to the studies found in the existing literature. Every solid line indicates the presence 

of a scientific study employing the application of the corresponding AI method to a certain area of disaster 

management. It is interesting to observe that, in general, each AI algorithm is not specific to solving a few 

problems, but if employed appropriately it can handle several, if not any, types of problems.  

Although big data have become a reality in recent years, intelligent algorithms for data analysis 

are essential in order to be able to exploit the information therein. AI is a powerful field used in data 

Figure 6: Pairing of the AI tools and disaster management applications according to the studies found in the 
existing literature 
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analytics. Specifically AI algorithms can be used for extracting insights and patterns from large sets of data, 

for analyzing historical data to predict future outcomes, for planning optimal solutions, etc.  

The space-time dynamics of hazards are driven by complex interactions that are difficult to foresee 

while cascading effects lead to further complications which put first responders at further risk. In the case 

of floods for instance, uncertainty in rainfall forecasts and unpredictability of other incidents is currently 

captured by computationally intensive models and scenarios with long simulation times. On the contrary, 

state-of-the-art AI and ML algorithms excel in capturing the uncertainty in the data and the models to 

facilitate effective predictions even with sparse data sets.  

 

3.3. AI-powered Autonomous Robot Devices 

The emergence of autonomous robot devices has been a driving force in exploiting AI in disaster manage-

ment. It is a growing category of devices including drones, autonomous underwater vehicles, unmanned 

ground vehicles, etc. These autonomous robots can be programmed to perform tasks with little to no 

human intervention. Increasingly, autonomous robots are powered with AI algorithms in order to recog-

nize and learn from their surroundings, to take actions and to collect data.  

When available, autonomous robots are an asset for a variety of tasks especially in disaster man-

agement operations. They can be exposed to dangerous environments and provide greater probability of 

mission success without the risk of loss of injury of persons. Furthermore, manned aircrew can lose con-

centration compared to robot devices as very often disaster response operations have to be executed 

under conditions that are far from ideal, namely under stress and during difficult and long hours. In the 

field, the information to process is often too much for the human brain, especially under high pressure 

and stress. In addition to all these, the personnel may be limited.  

 In particular, autonomous robots may be used in emergency response situations for applications 

like:  

 Mapping and reconnaissance,  

 Monitoring and tracking,  

 Temporary utility infrastructure, and  

 Delivery of help-aid 
 

3.4. Computer Vision Technologies 

Computer Vision is a powerful branch of AI dealing with how computers can gain high-level understanding 

from digital images and videos. Its applications in emergency response are numerous as the input data 

can be collected from several sources, such as: 

 Videos from cameras deployed for other purposes, like, security surveillance cameras (CCTV). 

 Static cameras deployed for a specific disaster management applications 

 Drone-mounted cameras (or robot-mounted cameras in general) 

 Photos uploaded by users to social media 
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There is wide range of computer vision tasks that can deliver different types of information and 

information of various precision levels. Typical computer vision tasks for disaster management operations 

include: 

 Recognition: Determining whether or not the image data contains a specific object, fearure, activ-

ity, etc. Different varieties of the problem include: recognition, identification and detection.   

 Motion Analysis: An image sequence (video) is processed to produce an estimate of the velocity 

of objects captured at the video. 

 Image Classification: Identifying what class, i.e., category, the object belongs to.  

 Object Tracking: Identify and track specific objects (or persons) in a video.  

Several applications of computer vision technologies for emergency response are included in the 

presentation slides.  

 

3.5. Modelling of Natural Disasters 

Computer Modelling is the process of constructing computer-based mathematical, graphical or algorith-

mic representations of real life systems of phenomena. A computer-based model consists of a set of al-

gorithms or equations used to capture the behaviour of a system. Modelling is a useful tool used in the 

context of many scientific fields. Some examples are traffic modelling, building structural modelling, car 

crash modelling, weather modelling, hurricane modelling, epidemic modelling.  

 The major benefits of using computer-based models include, but are not limited, to the follow-

ing: 

 Gain greater understanding of a process 

 Identify problems and bottlenecks in processes 

 Evaluate effect of system changes 

 Identify actions needed upstream or downstream relative to a certain operation, organization, or 
activity to either improve or mitigate events 

 Evaluate impact of changes in policy prior to implementation 

In disaster management, computer models of hazards and disasters are a key element in devel-

oping AI tools. A model of a disaster event, like a fire, a hurricane or a flood, is what provides the system 

with a machine-interpretable understanding of the situation.    

In order to provide an understanding of this important element in the following subsection we 

will present an overview of modelling for wildfires and floods.  

 

3.5.1. Wildfire modelling 

Wildfires over the years have been proven a real threat to natural ecosystems, wildlife, infrastructures 

and human lives.  Wildfires remain a great concern in the European Union since around 400000 hectares 

of natural land were burned in 2019, with approximately 48% falling within the Natura 2000 protected 

areas causing unparalleled damage with many years necessary to restore. Furthermore, wildfires are also 

considered significant contributors to forest loss and a barrier to the fight against climate change. 
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 Fighting wildfires is a dangerous and high risk job for fire fighters that requires tremendous skills 

and precise timing to keep the fire under control. An important tool that can assist in compacting wildfires 

is their modelling and simulation. Wildfire modelling enables the understanding of the situation and can 

help in the prediction of the fire behaviour. It can thus help in devising plans to effectively compact the 

fire, improving the safety of firefighters and the public, reducing risk and minimizing damage, as well as 

protecting ecosystems, watersheds, and air quality. 

 Fire modelling denotes the mathematical representation of wildfires that allows its numerical sim-

ulation in order to understand and predict its spatio-temporal behavior. Although fire models have been 

developed since 1940 due to their complexity they remain still an active research area. Fire models can 

be classified to: 

 Empirical models 

 Physical models 

 New generation models 

Empirical Fire Models rely upon a top-level model to determine the magnitude of heat exchanges 

and they depend on a simplified analytical rate of spread (ROS) to predict the propagation of a fire as a 

function of time. Because they are based on simplified mathematical models they can solve the fire prop-

agation problem faster than real-time. Figure 7 shows an example of a fire empirical model generated be 

FlamMap, a fire analysis application that simulates fire behavior by creating a variety of vector and raster 

maps of potential fire behavior characteristics (e.g., spread rate, flame length, crown fire activity) and 

environmental conditions that can be used for decision support and planning). 

 

 

 

Figure 7: A fire empirical model generated by the fire analysis application: FlamMap. 
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Physically based fire models consider the fire behaviour in presence of combustion chemistry, heat 

transfer, and fluid dynamics. These models determine the heat, mass, and momentum fluxes released 

from the burn fuel that are transferred to surrounding unburnt fuel and the atmosphere. Physical fire 

models numerically solve equations for the fluid dynamics and thermochemistry of fires. Accurate physical 

equations can be formulated but all require numerical solutions that are generally slower than real-time. 

Figure 8 illustrates an example of an illustrated physically-based fire model using HIGRAD/FIRETEC, a phys-

ics-based, 3-D computer code designed to simulate the constantly changing, interactive relationship be-

tween fire and its environment. This tool combined computational fluid-dynamics models and physics 

models. Due to its requirements for huge computational resources is currently a research tool only.   

New generation fire models combine both physical and empirical fire models coupled to a numer-

ical weather prediction (NWP) model or a computational fluid dynamics model (CFD). The coupled models 

include the interaction of wildfire with the surrounding atmosphere by means of changing the fire envi-

ronment via humidity, temperature, and wind speed and direction. These models are four-dimensional 

models (three dimensions in space and one in time). Wildfire can impact the atmosphere directly via its 

heat and moisture fluxes or smoke. Figure 9 shows an example of an WRF-Fire simulation from the Santa 

Ana (California) fires in 2007. WRF-Fire (SFIRE) is a fire modelling tool that allows users to model the 

growth of a wildland fire in response to environmental conditions of terrain slope, fuel characteristics, 

and atmospheric conditions, and the dynamic feedbacks with the atmosphere. Its two-way coupling be-

tween the fire behaviour and the atmospheric environment allows the heat released by the fire to alter 

the atmosphere surrounding it. 

In conclusion, the current approaches in fire modelling are very promising, but can be further im-

proved based on better knowledge on how wildfires ignited, spread, and were extinguished. Advance-

ments in high-performance computing and satellite platforms would enable the operational use of the 

promising wildfire–weather models. 

 

3.5.2. Flood modelling 

Flood events are one of the most destructive events that can happen. They can cause loss of life, severe 

damage to properties and adverse economic and environmental impact. As a natural disaster, flood risks 

cannot be completely eliminated, but flood modelling is a base for the development of many tools that 

can support decision-making in order to take precautions and minimize the consequences of a potential 

flood.  

Figure 8: A physically-based fire model using HIGRAD/FIRETEC 
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Flooding models are developed to predict the floodplain of a flood. Three main model types exist: 

 Empirical models,  

 Hydrodynamic models 

 Simplified models.  

These models provide flow and level forecasts at selected key locations. By exploiting the results of a 

flooding model, such as prediction of the water height and 2-dimensional velocity, it is possible to develop 

algorithms that can identify and monitor closely the most hazardous areas. The main features of the three 

types of models are summarized in the following table: 

 

Empirical models Hydrodynamic models Simplified models 

Assets 

Relatively quick and easy to im-

plement  

Based on observation 

Direct linkage to hydrology  

Detailed flood risk mapping  

Can account for hydraulic fea-

tures/ structures  

Quantify timing and duration of 

inundation with high accuracy 

Computationally efficient 

 

Limitations 

Non-predictive 

No/indirect linkage to hydrology 

(difficult to use in scenario mod-

elling) 

High data requirements  

Computationally intensive  

Input errors can propagate in 

time 

 

 

No inertia terms (not suitable for 

rapid varying flow)  

No/little flow dynamics repre-

sentation 

 

Figure 9: A new generation fire simulation with WRF-Fire from 2007 Santa Ana fires 
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Application range 

Flood monitoring  

Flood damage assessment  

 

Flood risk assessment 

Flood damage assessment  

Real-time flood forecasting 

Water resources planning  

 

Flood risk assessment  

Water resources planning  

Floodplain ecology 

River system hydrology  

Catchment hydrology  

Scenario modelling 

 

A flood model is in the heart of the development of many AI systems in all stages of disaster management. 

It can be useful in the development of early warning systems, as soon as the event starts to occur, in flood 

monitoring systems operating during the flood, and in damage assessment after the flood.  

 

3.6. Applications of AI in Disaster Management 

This Section presents a selection of AI applications for disaster management.  

 

3.6.1. Air Quality monitoring using UAVs 

Nowadays, air quality monitoring in urban areas is developed at high level as there are many fixed stations 

equipped with appropriate air quality sensors that detect the air pollutant levels and warn people in case 

of an emergency. On the other hand, in rural areas this method in not developed yet, so a potential solu-

tion is to flight an Unmanned Aerial Vehicle (UAV) equipped with onboard air quality sensors to detect air 

pollution levels and warn the community in case of a disaster. 

A hardware board containing air quality sensors is commonly used to measure pollutants like Par-

ticulate Matter (PM), Carbon Dioxide (CO2), as well as humidity and temperature levels. A custom board 

developed by KIOS CoE as well as the UAV with the board attached to it are depicted in Figure 10. These 

sensors are controlled via an Arduino Mega 2560 microcontroller with the use of a software written in 

Arduino IDE to capture the data from each sensor. After capturing the data, it is sent through serial com-

munication to a Robotic Operating System (ROS) that is installed on Nvidia Jetson Xavier NX (onboard PC). 

A publisher node is launched and then the data is passed through ROS topic to a subscriber, who is re-

sponsible to store the data. A MySQL database was created to store the sensor data to a specific database 

table and the results from ML algorithms to another database table.  
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Figure 10: The developed hardware board equipped with air quality sensors (left) and the board attached to the 
UAV (right) 

     

 

The next step is to divide an area to smaller area clusters based on the concentration of a specific 

air pollutant. Clustering is a data mining technique for grouping unlabeled data based on their similarities 

or differences. For example, K-means clustering algorithms assign similar data points into groups, where 

the K value represents the size of the grouping and granularity. By means of a K-means clustering algo-

rithm, based on the data acquired from our sensors attached to a drone, we divide an area into smaller 

area clusters according to the concentration levels of the contaminant CO2. Figure 11 shows the result of 

K-means clustering based on the CO2 pollutant concentration in the area.  

 

Figure 11: K-means clustering for an area based on the CO2 pollutant concentration 

 

Furthermore, we plan to develop additional ML algorithms in order to localize the source of the air pollu-

tion and to track the plume of the pollution during the flight of the drone. The DJI Matrice 300 RTK drone 

will flight autonomously using DJI’s Onboard Software Development Kit (OSDK) and these ML algorithms 

will run online on the Nvidia Jetson Xavier NX and will send through ROS commands to navigate the drone 

and track the plume of the air pollution. 
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3.6.2. Calculation of burned area index using UAVs 

We present AIDERS, a multi-drone web-based platform developed by KIOS CoE that aims to assist first 

responders in taking actionable decisions during emergency situations. This is achieved by using multiple 

UAVs along with AI and Computer Vision algorithms. 

One of the methods used in order to develop this platform is Remote Sensing. Remote Sensing is 

the science of obtaining information about objects or areas from a distance, typically from an aircraft or 

a satellite. This helps in understanding the characteristics of the ground, the vegetation or the atmos-

phere, and therefore assist the first responders in taking better decisions. To acquire such information 

from a distance, high quality multispectral cameras are used. These cameras capture image data at specific 

frequencies or specific bands across the electromagnetic spectrum. The captured spectral images also 

allow for extraction of additional information, which the human eye fails to capture. A multispectral index 

is a mathematical equation that is applied on the various multispectral bands of an image per pixel. These 

indices are the ones that can help us extract information about the ground, the vegetation or the atmos-

phere of an area. For example, the most common index used to assess the vegetation of an area is the 

NDVI (Normalised Difference Vegetation Index). Values above 0.5 indicate a healthy plant. 

In case of a fire event, first responders need to quickly gain situational awareness of the affected 

area in order to take better decisions. An aircraft equipped with a multispectral camera will capture im-

ages of the region of interest, and at the same time process them to calculate the Burned Area Index (BAI) 

in real time. The BAI is another index that uses the red and near-infrared bands of the camera spectrum 

to identify the areas of the terrain affected by fire (see example in Figure 12). 

 

Once BAI is calculated, the captured images are then georeferenced and attached to the map. The 

region of the burned area is also calculated, georeferenced and then highlighted on the image as a red 

Figure 12: The red and near-infrared bands of the camera spectrum (two lower layers) used to 
identify burned areas 
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polygon. This helps first responders as they can acquire the exact location of a burned area and take ac-

tionable decisions. An example of a final result after following the described workflow is illustrated in 

Figure 13. The red polygons indicate the exact location of burned terrain. 

 

 

We have decided to use remote sensing as it is proven to be a useful methodology to extract in-

formation. Although it is generally considered to be a reliable method, there are some limitations due to 

hardware or software constraints, or due to atmospheric conditions. However, several ML methods are 

jointly employed in order to increase the accuracy of the results.  

 

3.6.3. Person Detection and Tracking using UAVs 

The system for identifying individuals consists of two main components, detection and tracking. This is 

achieved by utilizing footage captured from various test missions using UAV (Unmanned Aerial Vehicles). 

Person detection is done by means of computer vision algorithms and a Convolutional Neural Network 

whereas tracking is achieved by means of a combination of algorithms. Furthermore, upon detecting and 

tracking the persons, all the data collected from the whole process is then saved in CSV files for further 

analysis. 

For the person detection algorithm, YOLOv48 was trained. YOLOv4 is an object detection algorithm 

that is an evolution of the YOLOv3 model, which is a real-time object recognition system that can recognize 

multiple objects in a single frame. For the model to recognize persons, a dataset of images was initially 

                                                           
8 A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,”arXiv preprint-
arXiv:2004.10934, 2020 

Figure 13: Identification of the burned areas (red polygons) after following the workflow described above. 
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created. Around 2500 images were collected and annotated. Some of those were captured from real life 

test missions and the rest were taken from the Heridal Database9. In order to increase the accuracy of the 

detector and to increase the dataset size, some image augmentations were implemented on several im-

ages and used as separate images for the training dataset. These augmentations include brightness, con-

trast, sharpness, and saturation. Image augmentation helps to enhance the details of the images which is 

helpful since the altitude at which the drones fly is usually high. The training was done using the Darknet 

Framework, an open-source neural network framework written in C and CUDA. 

Upon detecting the persons in a frame, tracking algorithms starts processing them. Initially the 

tracking utilizes the Hungarian Algorithm10, which uses the Intersection of Union of the detections com-

pared to the previous detections as a similarity metric score. The matching association for each person 

detection is executed in the current frame with the highest achieved Intersection over Union score of the 

previous frames. Apart from the Intersection over Union matching, a distance matching algorithm is also 

implemented, assuming the scenario of having no detections matched with previous person already de-

tected, using the Intersection over Union score. The distance matching algorithm calculates the Euclidean 

distances of a person’s last position, to all other detected persons of the current frame. Then, if the near-

est bounding box area and size match approximately the area of the previously tracked person’s box, the 

newly detected person is the previously targeted person. Furthermore, a Kalman filter is used to estimate 

the position of the tracked person in case of any occlusion, such as trees, or if the detector fails to detect 

the person but the person was moving. The Kalman filter updates its variables using the x, y coordinates 

of the matched box in the current frame, assuming a nearly constant speed model. Finally, all the data 

collected from the whole process is saved in CSV format files in order to be further processed for data 

collection and analysis. These files contain the location and trajectories of the persons in x,y pixel coordi-

nates, and the moving direction for each person for each frame. Figure 14 shows a screenshot from a 

video captured during a field exercise where all persons are detected and marked with blue boxes. 

 

                                                           
9 D. Božić-Štulić, Ž. Marušić, S. Gotovac: Deep Learning Approach on Aerial Imagery in Supporting Land Search and Rescue 
Missions, International Journal of Computer Vision, 2019 
10 G. A. Mills-Tettey, A. Stentz, and M. B. Dias, “The dynamic Hungarian algorithm for the assignment problem with chang-
ing costs,”Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-07-27, 2007 

Figure 14: A screenshot from a video captured during a field exercise where all persons are detected (marked 
with blue boxes) 
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3.6.4. Monitoring Water Contamination Events using UAVs 

Pathogens can easily spread via water leading to serious health complications. Due to the nature of their 

work, first responders are at a high risk to become contaminated while operating in areas where water is 

present. It is, therefore, critical to be able to extract knowledge and suggest recommendations in order 

to manage the contamination event, assess the risk and forecast its evolution, as well as to develop fo-

rensic investigation tools.  

KIOS CoE developed a system where an AI-powered drone will be able to strategically choose spe-

cific high-risk target locations and monitor them as fast as possible. At the heart of the system is a hydro-

dynamic flood prediction model. Hydrodynamic models can simulate the height of water depths and the 

velocities in x and y directions. Considering the velocities and the water depths, waypoints are extracted 

so that the drone is able to monitor the more dangerous locations. 

In particular, after a flooding event has occurred in an area the flooding prediction software will 

be employed. The used flooding model predicts the state of water for approximately 1 hour ahead and 

projects it on a grid map with a cell size of about 50m. Each minute all the targets that are worth to be 

visited, based on the momentum of the water, are selected for further monitoring. The drone computes 

online its trajectories in order to visit the targets in the minimum time. It will arrive before the flood 

reaches an area and will send valuable information to first responders to enhance decision making. Hence, 

first responders would be able to extract information on the potential hazardous areas before the water 

reaches that area. After all targets are visited, the process is repeated. The diagram describing the whole 

process is depicted in Figure 15. 

 
Figure 15: Diagram of the monitoring procedure 
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3.6.5. Employing Reinforcement Learning in Disaster Management 

Reinforcement learning has a strong potential in disaster management applications. It can find an opti-

mized strategy by means of learning from its own experience (i.e., actions) without requiring any prior 

knowledge of the system behavior. It can be, therefore, used to model systems whose behavior exhibits 

changes and uncertainties. Furthermore, reinforcement learning can be trained for objectives that are 

hard to optimize directly because of the lack of precise model, a feature that is very useful when address-

ing an emergency, unpredicted situation. 

 In order to illustrate the usefulness of reinforcement learning we present an example of an appli-

cation found in the literature employing reinforcement learning to solve typical problems arising in disas-

ter management. It is one of the first attempts to formulate a large-scale disaster rescue problem by 

means of a reinforcement learning problem using massive social network data11. Specifically, the study 

presents a scheduling algorithm based on reinforcement learning to organize the rapid deployment of 

volunteers to rescue victims in dynamic settings. The objective is to quickly identify victims and volunteers 

from social network data and then schedule the rescue teams for helping the victims. The algorithm has 

been demonstrated in a case study using Twitter data collected during Hurricane Harvey in 2017 (Figure 

16).  

 

Figure 16: Tweets related to Hurricane Survey in 2017. Sample tweets requesting and offering help (left) and the 
distribution of volunteers and victims in the Houston area on August 28, 2017 (right). (Source: 11) 

 

 

This approach aims to match volunteers and victims for faster relief and efficient use of limited 

public resources by introducing a new disaster relief channel that can serve as a backup plan when tradi-

tional helplines are not sufficient. Experimental results have shown that the proposed framework can 

respond to dynamic requests and achieve an optimal performance in terms of both space and time.  

  

 

                                                           
11 L. Nguyen, Z. Yang, J. Zhu, J. Li, and F. Jin, “Coordinating Disaster Emergency Response with Heuristic Reinforcement Learn-
ing”, arXiv e-prints, 2018 
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4. TESTING AND EVALUATING AI TECHNOLOGIES 

It is of great importance that the development of novel methods for disaster management is followed by 

their successful trials in realistic field exercises. Throughout a trial the objective is to identify gaps and find 

an appropriate way to address them. Furthermore, innovation does not necessarily mean experiencing an 

immediate gain. It is important to apply adequate methodological know-how before investing in a solution 

in order to identify whether it can be useful and in which context.    

However, in order to be effective, trials need to follow a structured methodological approach, es-

pecially when they have to do with the assessment of solutions through the involvement of several stake-

holders, from first responders to solution providers. In general, well-defined tests achieve more precise 

results. In addition, a co-creative approach helps to address stakeholders needs and allows exchange of 

knowledge among different entities. A structured setup sets a benchmark for future solutions and pre-

serves also the possibility to reproduce the trial, especially if it is to be repeated by others. *especially  

To this end, we propose the employment of the Trial Guidance Methodology (TGM), a framework 

that was developed as part of the activities of the EU funded Driver+ project (Grant Agreement 607798)12. 

TGM provides a practical guide for organizations that are involved in crisis management. The objective is 

to assist the involved stakeholders in creating realistic environments for testing novel tools in order to be 

able to identify needs as well as to test and assess potential solutions by means of a structured method-

ology. The methodology, which is depicted in the TGM Wheel (Figure 17), consists of three main phases: 

 Preparation 

 Execution 

 Evaluation 

and a number of steps within each phase.  

  

 

                                                           
12 https://www.driver-project.eu/ 

Figure 17: The TGM Wheel 
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During the preparation phase, the trial context is defined and gaps relevant to it are identified. The design 

of the trial follows an iterative and non-linear six step approach. The objectives of the trial need to be 

defined and appropriate research questions need to be formulated in order to generate robust outcomes 

regarding the added value of the solutions under trial. To do this, a structured data collection plan is 

needed as well as evaluation approaches and metrics to analyze the data at the end of the trial. Finally, 

realistic scenarios must be developed and solutions must be selected to allow you to ascertain whether 

they could be innovative.  

In this process, iterativeness is a key. We need to plan it, check it, adjust it and try it before the 

final run. In each step previous decisions must be open to readjustments. For example, a small change in 

the research question might require to look back at Key Performance Indicators, to adjust the data collec-

tion plan and correct the scenario.  

After designing the trial we are ready for the execution phase. Rehearsals and meetings are crucial 

to align perspectives among all stakeholders and to make sure that everything fits the plan decided in the 

preparation phase. Rehearsing also assists the detection and mitigation of various processual influences 

(biases). Full rehearsal of the trial is called dry run 2 and after that, we are ready to run the trial.   

 After the execution of the trial, the collected data can be checked and analyzed according to the 

evaluation approaches selected during the preparation phase. After analyzing the data, we are ready to 

synthesize the results providing evidence on the impact of the tested solutions. Finally, the dissemination 

of results to the disaster management community is an important part of the evaluation phase.  
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CONCLUDING REMARKS 

The applications of AI in disaster management are many and powerful. The development of AI algorithms 

combined with the availability of big data, powerful computing devices and automated robots can not 

only make several tasks and processes easier, but can facilitate operations that could not be possible 

without their employment. The potential benefits can cover an endless variety of aspects, from the safety 

of first responders, to the faster rescue of the victims, to the elimination of damages. 

The topic is too extensive to be covered in this training manual, however this material aims to give 

all interested stakeholders an understanding of the broad scope and numerous applications of artificial 

intelligence in emergency response.  

 

 


