imaros

Producer Involvement Conference

Silje Berger

Malmö, 18. April 2024

Key data

Project name: IMpacts And Response Options regarding low

sulphur marine fuel oil Spills

Project Acronym: IMAROS 2

Duration: 1. 1.2024- 31.12.2025

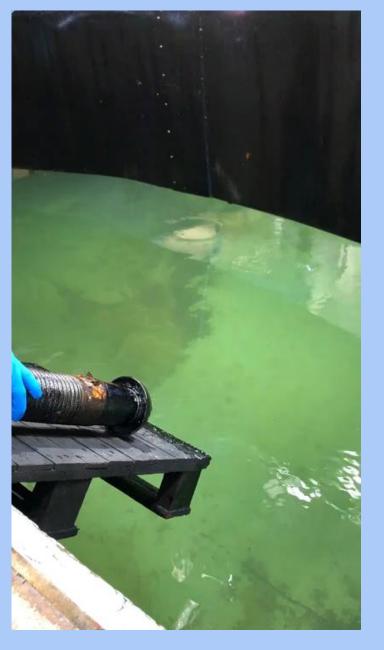
EU Co-financing: 85%

Web: https://civil-protection-knowledge-network.europa.eu/projects/imaros-2

Call / project number: UCPM-2023-KAPP /101140015

Project partners

Background


- Previous tests and observations
- IMAROS project

IMAROS project

Project name: Improving response capacities and

understanding the environmental impacts of new

generation low sulphur MARine fuel Oil Spills

Project Acronym: IMAROS

Project period: 1.1.2020 – 30.6.2022

Website: <u>www.kystverket.no/imaros</u>

Objectives

- Recommendations for oil spill response involving the new generation of fuel oils
 - capacities and methods for response at sea and shorelines
 - oil spill behavior and potential environmental impacts

Work packages

- Planning
- Meetings & workshops
- Financial management
- Reporting

WP1: Project management

- Overview of frequently encountered new 0,1 % and 0,5% S products
- Sample collection and selection for WP 3 and 4

WP2: Compilation of knowledge

- Chemical composition and physical properties:
- Oil weathering
- Behaviour in the environment
- Oil spill identification
- Modelling

WP3: Chemical characterisation

- Testing of response methods and equipment:
- Mechanical recovery
- Dispersants
- *In situ* burning
- Shoreline clean-up

WP4: Response options

Screening of physical and chemical properties

- 13 samples collected
- 2 ULSFO / 11 VLSFO
- From 7 countries
- From oil producers, bunker deliverers and Wakashio incident
- Residual products, mostly blended
- 3 semi-solid oils at room temperature
- Screening of chemical and physical properties at CEDRE

Results fresh oils

Sample	S content	Density	Density	Viscosity 5 °C		Pour Point	Flash Point	Asph. (%) (3)	Waxes (%) ⁽³⁾	Evaporation
	(%)	5 °C	15 °C	(mPa.s) ⁽¹⁾⁽²⁾	(mPa.s) ⁽¹⁾	(°C)	(°C)			(vol.%)
IM-1	0.08	0.96	0.95	solid	solid	27	>100	0.3	17.3	3.8
IM-2	0.46	0.94	0.93	solid	solid	27	>100	0.5	12.1	5.2
IM-3	0.46	0.99	0.98	4858	1293	0	99.5	2.3	4.8	8.6
IM-4	0.48	0.95	0.95	2808	703	21	93	2.2	8.1	9.0
IM-5	0.47	0.92	0.91	1826	375	9	84	0.6	5.1	10.5
IM-6	0.45	0.98	0.97	2244	892	-27	78	3.0	7.6	28.1
IM-7	0.49	0.95	0.94	4415	19117	15	>100	1.7	6.2	6.7
IM-8	0.49	0.97	0.96	15585	3348	9	>100	1.6	9.9	15.4
IM-9	0.08	0.90	0.90	solid	solid	30	>100	1.6	20.6	21.6
IM-10	0.47	0.95	0.94	12443	2451	0	>100	3.7	9.1	2.9
IM-11	0.49	0.95	0.94	8171	1964	0	>100	3.4	9.0	2.6
IM-12	0.48	0.95	0.94	10679	3042	-9	83.5	1.8	18.6	21.4
IM-13	0.48	0.96	0.96	24994	6240	-6	77	2.3	8.7	16.9

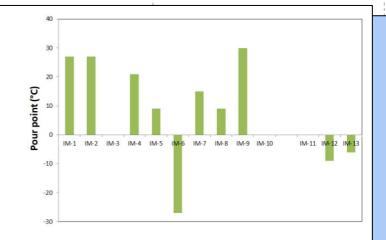
⁽¹⁾ Viscosity measured with a shear rate of 100 -s

⁽³⁾ Values recalculated for the fresh oils, from the 250 °C residues, taking into account the evaporation rate at 250 °C

⁽²⁾ At 5 °C, the mean of the ten first values were calculated

Viscosity (mPa.s)

	Viscosity 15°C Viscosity 5°		
Min	375	1826	
Max	6240	23985	


Density				
		Density 15°C	Density 5°C	
	Min	0.90	0.90	
	Max	0.98	0.99	

Gasoline*: 0.65 – 0.75 HFO*: ~1.00

Pour point (°C)

	Pour point (°C
Min	-27
Max	30

Gasoline *: -HFO*: variable

→ Depending on the LSFO involved and on the local temperatures, behaviour can greatly differ and recovery can be challenging

Summary of results

- High variability of the physico-chemical properties that likely reflects different ways of making VLSFO to comply with their sulphur limits
- Safety: no flammability issues expected
- Persistence at sea surface expected
- Immersion issues could occur in particular environments (freshwater,..)
- Sticky behavior or highly viscous oils can be encountered

IMAROS: Conclusions

- Great variability in the physico-chemical properties of LSFO
 - LSFO spills may show very different behavior and impacts in the environment.
 - The tested aquatic ecotoxicity is within the range observed in traditional fuel oils.
- Oil spill responders will need to be prepared for spills with a wide range of different characteristics.
 - Sticky behaviour or highly viscous oil can be encountered
 - High pourpoint and solidification of the oil is a main challenge for mechanical recovery related to some of the tested samples.
 - Penetration of some oils into the bedrock might affect shoreline clean-up.

IMAROS: Research needs

- Efficient mechanical recovery of oils with high pour point
- Investigate further the link between the pourpoint, elasticity and wax
- Penetration of some of the oils into rocks has not been observed before, why
 this is happening is unknown. Consequences for shoreline clean-up?
- Further following up on the changing market trends and resulting risk picture
- Biofuels in-mix (Fame, HVO, B100 etc.) How much biooil would go into the oil and what other additives are used?
- Visco-elastic and brittle rheologies to simulate spreading and cracking of oil slicks for VLSFO with high pour point

imaros₂

Main objectives

 Improve understanding of oil spill behaviour of LSFOs, and consequently decision making on all levels of oil spill response operations

Improve capacities of mechanical recovery and shoreline response

Work packages

WP1

Project management and cross-cutting

WP 2

Trends and samples

WP3

Characterization and impacts

WP 4
Mechanical recovery

WP 5 Shoreline response

WP 1 Project management and cross-cutting

Lead: Norwegian Coastal Administration

Participants: All partners

Duration: Month 1-24

Objectives:

- Project management
- Crosscutting activities
- Communication
- Synthesis of results from all WPs

WP 2 Trends and samples

Lead: Rijkswaterstaat

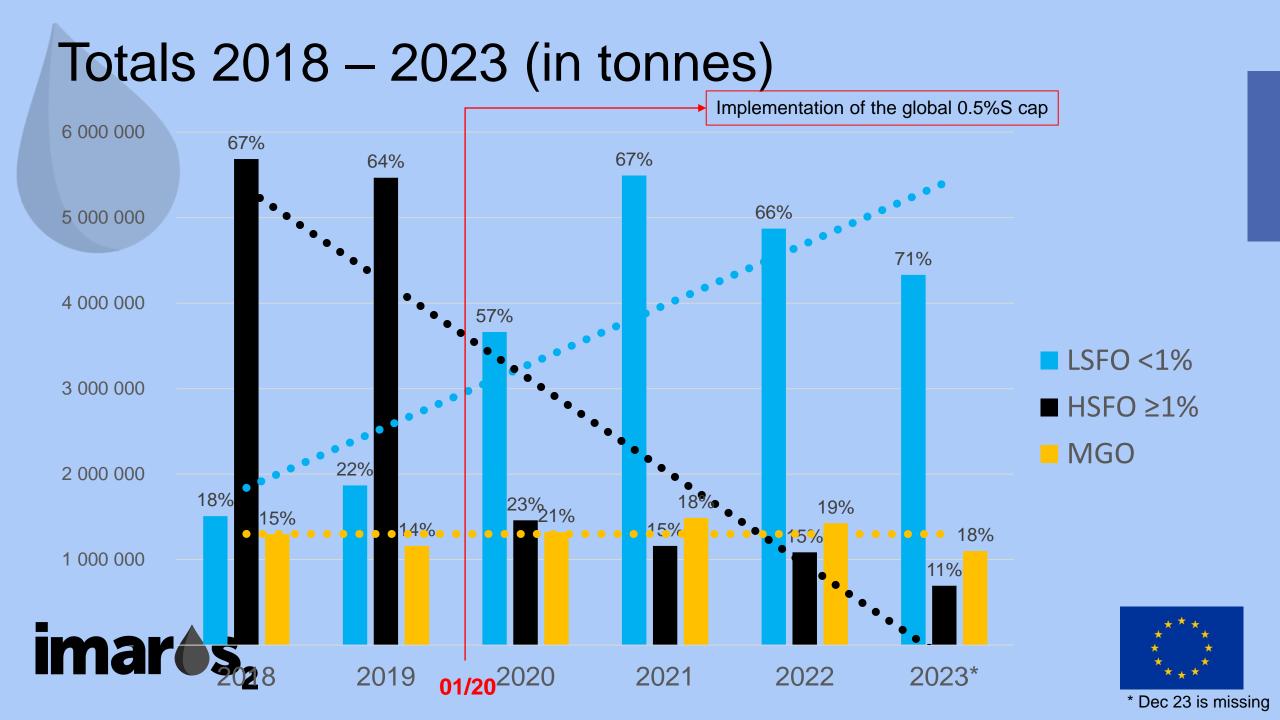
Participants: All partners

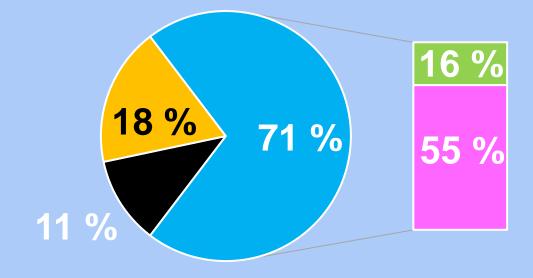
Duration: Month 1-18

Objectives:

- Update knowledge on ship fuels in European waters
- Collect representative oil samples

Example: Belgian Petrol Balance


- Governmental Energy monitoring by Fapetro
- Monitors and controls the quality of petroleum products marketed in Belgium
- Petrol Balance: bunkers for seagoing vessels



Breakdown 2023

- HSFO ≥0.5%
 MGO
- ULSFO <0,1% VLSFO <0,5%

Belgian Petrol Balance

Balance MGO - VLSFO – ULSFO 2020 vs 2023*

WP 3 Characterization and impacts

CEDRE Lead:

Royal Belgian Institute of Natural Sciences, Rijkswaterstaat Participants:

Month 6-22 **Duration:**

Objectives:

- Screening and characterisation of samples
- Improve understanding of properties of LSFO affecting recovery and shoreline response, including wax-components and interfacial tension
- Improve understanding of behaviour of LSFO in marine and fresh waters
- Improve understanding of behaviour and response options in the Mediterranean

WP 4 Mechanical recovery

Lead: Norwegian Coastal Administration

Participants: All partners

Duration: Month 2-22

Objectives:

- Test applicability of different mechanical recovery systems to on the of LSFOs with challenging behaviour
- Promote innovation and improvement of existing equipment

WP 4 Tasks

4.1 Manufacturer involvement and innovation

- •Responsible partner: Swedish Coast Guard
- Producer Involvement Conference
- •Invitation to participate in trials
- Selection process for trails

4.2 Mechanical recovery trial period 1

- •Responsible partner: Norwegian Coastal Administration
- Norwegian test facility
- •Temperate conditions

4.3 Mechanical recovery trial period 2

- •Responsible partner: Finnish Borderguard
- •Finnish testfacility
- •Cold / ice conditions

4.4 Mechanical recovery trial period 3

- •Responsible partner: Norwegian Coastal Administration
- •Norwegian test facility part 2: Improvements
- •Temperate conditions

WP 5 Shoreline response

Lead: CEDRE

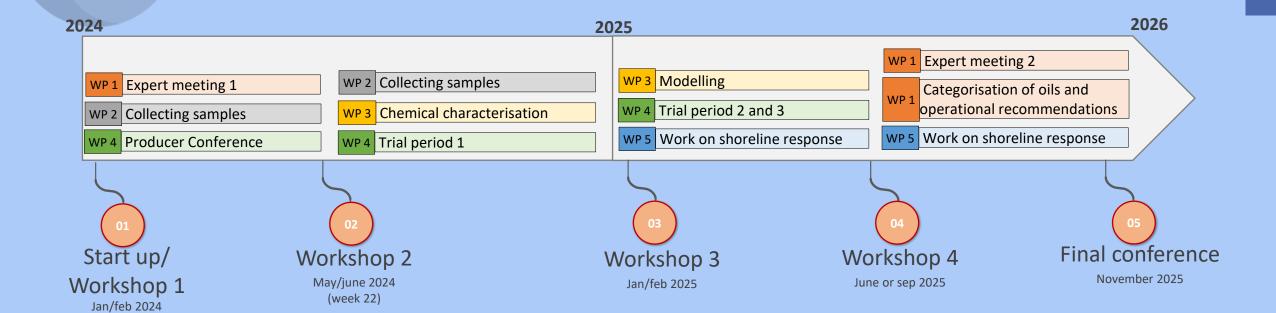
Participants: CEDRE, Norwegian Coastal

Administration, Transport Malta

Duration: Month 7-23

Objectives:

- Identify possible gaps and solutions within shoreline clean-up methods and/or equipment
- Give operational recommendation by categorizing the different types of LSFO and associated response options
- Study the potential toxicity of LSFO absorbed in rocks on marine organisms



Timeline for the project

