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1. INTRODUCTION 
 
The overarching goal of the MEDEA project is to enhance cross-border disaster risk management by 

focusing on prevention and preparedness in Europe and neighboring EU countries. Specifically, the 

proposal aims to mitigate the impact of seismic events and enhance resilience, defined as the 

capacity to withstand, absorb, adapt to, and recover from earthquakes efficiently and promptly. To 

achieve this objective, the project proposes developing an intelligent system for multidimensional 

seismic risk assessment in cross-border regions. Using artificial intelligence, this system aims to 

estimate earthquake-induced losses by predicting structural damage, such as building collapses, 

while also forecasting the psychological ramifications for affected individuals. Integrating 

psychological consequences, the project will investigate familial and individual factors and relational 

and contextual aspects that may exacerbate psychological distress among family members in the 

aftermath of seismic events. By assessing potential medium and long-term psychological effects on 

those involved in earthquakes, the project seeks to identify high-risk families susceptible to 

psychological distress, thereby anticipating and preventing the onset of post-traumatic stress 

disorder (PTSD).  

Within the framework of the MEDEA project, the specific objective of Work Package 4, “XAI Models”, 

is to design and develop eXplainable Artificial Intelligence (XAI) models and data fusion techniques 

to predict the damages to structures as a consequence of seismic event. This was done by estimating 

a structure's peak ground acceleration to achieve the D3 limit state, starting from a set of technical 

parameters describing the structure and considering the roof displacement at the elevation floor as 

an engineering demand parameter. We achieved a precision higher than 95% in estimating this PGA 

value, and the explanations given by the models are in line with those given by experts in structural 

engineering. 

This deliverable describes the results obtained and is organized as follows: Section 2 gives an 

overview of machine learning, regression, and classification problems; Section 3 presents the results 

achieved; Section 4 draws the conclusions. 
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2. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 
 
Machine Learning is the art and science of teaching computers to learn from data, uncover patterns, 

and make informed decisions without explicit programming instructions. It represents a departure 

from traditional rule-based programming paradigms, where developers meticulously craft 

algorithms to perform specific tasks. Instead, Machine Learning algorithms can generalize from 

examples, extrapolate insights, and improve performance over time as they ingest more data. The 

origins of Machine Learning can be traced back to the mid-20th century, with pioneers like Arthur 

Samuel laying the groundwork for what would become a transformative field. Initially rooted in 

artificial intelligence, Machine Learning experienced significant advancements fueled by 

computational advancements, algorithmic breakthroughs, and the explosion of data availability in 

the digital age. Today, Machine Learning permeates nearly every facet of our daily lives, from 

personalized recommendations on streaming platforms to autonomous vehicles navigating city 

streets. Its applications span diverse domains, including healthcare, finance, manufacturing, 

marketing, and beyond, revolutionizing processes, enhancing decision-making, and unlocking 

unprecedented insights from complex datasets. 

The algorithms underpinning its functionality are central to the efficacy of Machine Learning. These 

algorithms encompass a spectrum of techniques, from classical methods like linear regression and 

decision trees to cutting-edge deep learning architectures such as convolutional neural networks 

and recurrent neural networks. Each algorithmic approach has strengths, weaknesses, and 

suitability for particular tasks, enabling practitioners to tailor solutions to specific problems 

effectively. The proliferation of Machine Learning increased with the availability of robust 

frameworks, libraries, and tools that democratize its application. Platforms like TensorFlow, 

PyTorch, and scikit-learn provide accessible interfaces for developing, deploying, and scaling 

Machine Learning models, lowering barriers to entry and empowering a broader community of 

researchers, engineers, and enthusiasts to harness its potential. However, amidst its remarkable 

advancements and transformative potential, Machine Learning also grapples with inherent 

challenges and ethical considerations. Issues surrounding bias, fairness, transparency, and 

accountability underscore the importance of responsible AI development and governance 

frameworks to mitigate unintended consequences and ensure equitable outcomes for all 

stakeholders. Looking ahead, the trajectory of Machine Learning promises continued innovation and 
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evolution, driven by interdisciplinary collaboration, interdisciplinary collaboration, and the 

convergence of fields such as computer science, statistics, mathematics, and domain-specific 

expertise. As algorithms grow more sophisticated, data more abundant, and computational 

resources more powerful, the boundaries of what's achievable with Machine Learning continue to 

expand, heralding a future where intelligent systems work in tandem with humans to tackle complex 

problems and advance society. 

 

2.1 Classification and Regression 
 
Classification and regression are two fundamental tasks in machine learning. These tasks enable 

systems to make sense of data, infer relationships, and make informed decisions in various 

applications. Classification and regression represent distinct but interconnected paradigms within 

machine learning, each tailored to address specific types of problems and data. While classification 

involves predicting discrete class labels or categories, regression focuses on estimating continuous 

numerical values. Together, they form the foundation of supervised learning (see Figure 1), where 

models are trained on labeled data to make predictions based on input features. In classification 

tasks, the goal is to assign input data points to predefined categories or classes based on their 

features. This could involve distinguishing between spam and legitimate emails, identifying 

handwritten digits in images, or predicting a patient's disease likelihood based on medical test 

results.  

 

 
Figure 1: Machine learning tasks. 
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Classification algorithms learn decision boundaries in the feature space that separate different 

classes, allowing them to classify new, unseen data points accurately. Common algorithms for 

classification include logistic regression, decision trees, support vector machines (SVM), k-nearest 

neighbors (KNN), and, of course, neural networks. Each algorithm has strengths, weaknesses, and 

suitability for different data types and problem domains. For instance, decision trees excel at 

handling categorical data and capturing nonlinear relationships, while SVMs are effective in high-

dimensional spaces with clear separation between classes. On the other hand, regression tasks 

involve predicting a continuous numerical value based on input features. This could include 

forecasting stock prices, estimating house prices based on property features, or predicting the 

temperature based on weather variables. Regression algorithms learn to model the relationship 

between input features and output values, allowing them to make accurate predictions for new data 

points. Popular regression algorithms include linear regression, polynomial regression, decision 

trees, random forests, gradient boosting machines (GBM), and neural networks. Like classification 

algorithms, each regression technique has its strengths and weaknesses, making it important to 

select the most appropriate algorithm based on the data's characteristics and the problem's nature. 

In both classification and regression, the performance of a machine learning model is evaluated 

using metrics such as accuracy, precision, recall, F1 score, mean squared error (MSE), and R-squared. 

These metrics provide insights into how well the model generalizes to unseen data and can help 

guide the model selection and optimization process. While classification and regression represent 

powerful tools for predictive modeling, they are not without challenges. Overfitting, where a model 

learns to memorize training data rather than generalize to new data, and underfitting, where a 

model is too simplistic to capture the underlying patterns in the data, are common pitfalls that must 

be addressed through techniques such as regularization, cross-validation, and ensemble learning. 

Moreover, the choice of features, data preprocessing, and feature engineering play crucial roles in 

the performance of classification and regression models. Feature selection techniques such as 

principal component analysis (PCA), feature scaling, and normalization can help improve model 

performance and efficiency by focusing on the most relevant information in the data. 
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2.2 Explainable AI 
 
In an era where machine learning models play an increasingly pivotal role in decision-making across 

diverse domains, the demand for transparency, accountability, and trustworthiness has never been 

greater. As these models permeate critical sectors such as healthcare, finance, criminal justice, and 

autonomous systems, understanding how they arrive at their predictions and recommendations is 

paramount for ensuring fairness, mitigating biases, and fostering user acceptance. The explainability 

of machine learning models refers to the ability to understand and interpret the inner workings of 

these complex algorithms, elucidating the factors and features that drive their decisions. It 

encompasses the technical mechanisms underlying model predictions and the broader socio-ethical 

implications of algorithmic decision-making on individuals and society. The pursuit of explainable AI 

depends on the balance between achieving high performance and maintaining interpretability.  

While the state-of-the-art machine learning models, particularly deep neural networks, often 

achieve remarkable accuracy and predictive power, their black-box nature can challenge 

understanding how they arrive at their conclusions. This lack of transparency can hinder adoption, 

especially in high-stakes applications where trust and accountability are paramount. The 

importance of explainability extends beyond mere curiosity about how algorithms work. In contexts 

such as healthcare, where decisions impact patient outcomes, or in legal proceedings, where 

individual rights are at stake, the ability to provide clear, interpretable explanations for algorithmic 

decisions is crucial for ensuring fairness, mitigating biases, and upholding ethical standards. 

Furthermore, explainable AI is essential for fostering user trust and acceptance of machine learning 

systems. Users are more likely to embrace AI-powered technologies when they can understand and 

validate the reasoning behind algorithmic decisions. Conversely, opaque or incomprehensible 

outputs can lead to skepticism, distrust, and even rejection of AI systems, undermining their 

effectiveness and potential societal benefits. Regulatory and ethical considerations further 

underscore the need for explainability. Increasingly, policymakers and regulatory bodies recognize 

the importance of transparency and accountability in algorithmic decision-making, enacting laws 

and guidelines that mandate the explainability of AI systems, particularly in sensitive domains like 

healthcare, finance, and criminal justice.  

Fortunately, explainable AI is rapidly evolving, with researchers developing various techniques and 

methodologies to shed light on the inner workings of machine learning models. These approaches 
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range from model-specific interpretability methods, such as feature importance scores and 

attention mechanisms in neural networks, to model-agnostic techniques like LIME (Local 

Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations), which 

provide post hoc explanations for any black-box model. Moreover, advancements in 

interdisciplinary research, drawing on insights from computer science, statistics, psychology, and 

philosophy, enrich our understanding of what constitutes a meaningful explanation in AI. Concepts 

such as causal reasoning, counterfactual explanations, and human-centered design are gaining 

traction as researchers seek to bridge the gap between technical accuracy and human 

comprehension in explaining machine learning models.  

The pursuit of explainable AI holds profound implications for future AI development and 

deployment. As machine learning models become increasingly integrated into society's fabric, the 

ability to provide transparent, interpretable explanations for their decisions will be essential for 

fostering trust, ensuring fairness, and maximizing the societal benefits of AI technology. By 

embracing the principles of explainability, we can navigate the complex interplay between technical 

innovation, ethical considerations, and human values in pursuing responsible AI. 

 

3. DATASET 
 
The buildings and related technical parameters described in this section are related to masonry  (M) 

buildings. Other buildings with related structural technical parameters describing reinforced  

concrete (RC) buildings are presented in Appendix A. 

 

3.1 Masonry buildings (M) 
 
The input parameters are divided into three macro categories. In particular, the first one is focused 

on the material and mechanical parameters characterizing masonry such as elastic (Ef) and shear 

modulus (Gm), density (wm), and average value of compressive (fm) and shear strength (τm). 

Specifically, the material and mechanical parameters used are found in the current/previous 

Technical Standards for the mechanical characterization of stone and clay-brick masonry. The 

second category focuses on the geometry of the masonry structure, both at the global level and at 

the local level. At the global geometry level, the parameters are the number of floors of which the 
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masonry structure is composed (nf), the average value of the height of the individual floors (hf), the 

ratio of the length of the masonry structure along the two main X- and Y-directions (sides ratio (x-

length / y-length)), the number of internal shear walls (evaluated in both main directions), and the 

floor area. 

At the local geometry level the parameters are evaluated on a floor-by-floor basis. Specifically they 

are the average value of the thickness of the individual (internal and external) shear walls (tm), the 

area of the openings (doors and windows) present on each level, and the the effective shear area, 

obtained by subtracting the area of the openings from the cross-sectional area of the walls. 

The parameters belonging to the second macro category manage to describe all structures, at the 

geometric level in a comprehensive and timely manner, even those with non-regular geometries in 

plan and elevation. Finally, the last macro category is focused on Seismic Analysis, which takes into 

consideration the mass of the individual floor (SM). 

The number of input data for masonry structures depends on the number of floors, since some 

parameters, such as openings, average shear wall thickness, etc., must be evaluated individually for 

each floor. Specifically, the parameters for a two-level masonry structure (called base) are 30, 

whereas for a three-level masonry structure, they are 42. In other words, 12 parameters are added 

for each additional floor compared to the base structure. Figure 2 shows the 3D model of masonry 

structures for 2 and 3 levels. In addition, the number of internal shear walls of 1, 2 (arranged along 

the two main directions and staggered) was considered. Figure 3 shows two internal shear walls. 

                              
                  (a)                           (b) 

Figure 2: 3D model of masonry structures: (a) 2 levels, and b) 3 levels. 

 
Figure 3: Two internal shear walls. 
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In this deliverable, based on considerations by experts in structural engineering, each building is 

described by 6 global technical parameters (from 𝐹𝐹0 to 𝐹𝐹5), and each level of a  masonry structure is 

described by 12 technical parameters  (from 𝐹𝐹6 to 𝐹𝐹17). Table 1 summarizes the 18 technical 

parameters considered. 

Table 1: Technical parameters for masonry building. 

ID    Description 
𝐹𝐹0    Number of levels 
𝐹𝐹1    Average floor height 
𝐹𝐹2    Sides ratio (x-length / y-length) 
𝐹𝐹3    Floor area 
𝐹𝐹4    Number of internal alignments of masonry wall in X-direction  
𝐹𝐹5    Number of internal alignments of masonry wall in Y-direction 
𝐹𝐹6    Area of the openings of the external masonry walls 
𝐹𝐹7    Area of the openings of the internal masonry walls 
𝐹𝐹8    Average thickness of external masonry shear wall 
𝐹𝐹9    Average thickness of internal masonry shear wall 
𝐹𝐹10    Average shear strength of masonry 
𝐹𝐹11    Average compressive strength of masonry 
𝐹𝐹12    Masonry gross density 
𝐹𝐹13    Elastic modulus 
𝐹𝐹14    Shear modulus 
𝐹𝐹15    Effective shear area 
𝐹𝐹16    Seismic floor mass 
𝐹𝐹17    Ratio seismic floor mass / Effective shear area 

 

3.2 Preprocessing the dataset 
 
Each sample in the dataset describes a building through a set of structural parameters. Each sample 

is also characterized by the Peak Ground Acceleration (PGA) values for which the structure reaches 

four limit states determined by the PGA the building can withstand. These limit states are defined 

as follows: 

●   D1 - Immediate Occupancy (IO): 

In this state, the structure experiences minimal to no damage during the seismic event. The 

building remains fully functional and safe for occupancy immediately after the earthquake. 

The structural response tends to be linearly elastic, meaning the structure behaves within 

the elastic range of its materials. No immediate repair work is required for the building to 

resume normal operations. 
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 ●  D2 - Life Safety (LS): 

Structures in this state have sustained moderate damage but are still deemed safe for 

occupancy. Occupants can evacuate safely during the earthquake, with a low risk of life-

threatening collapse. Some repair work may be needed to address the damage, but the 

structural integrity remains intact. 

 
 ●  D3 - Damage Control (DC): 

This state indicates significant damage to the structure, rendering it temporarily unusable. 

Occupants must evacuate the building due to safety concerns, and extensive repair work is 

required before reoccupation. The damage can be repaired, but it is substantial enough for 

thorough assessment and repair efforts. 

 
 ●  D4 - Collapse Prevention (CP): 

In the collapse prevention state, the structure has incurred severe damage that 

compromises its integrity. There's a high risk of imminent collapse, and the building may 

need to be evacuated permanently. Repair may not be feasible, and demolition or significant 

reconstruction is often necessary to prevent catastrophic failure. 

 

These seismic damage limit states provide a framework for assessing and categorizing the level of 

damage sustained by structures during earthquakes, helping engineers and authorities make 

informed decisions regarding safety, evacuation, and repair efforts. 

The definition of building collapse is not unique. However, collapse can be defined as the inability 

of the structures to guarantee a given performance for a given earthquake. At collapse, a structure 

loses its capability to carry lateral loads. Collapse can be assessed through either local or global 

engineering demand parameters (EDPs). Collapse depends on a number of factors, all affected by 

the cyclic response of the structure to a given earthquake.  

As stated in the previous section, the dataset of structures included two-, three- and four-level 

buildings described by 30, 42, and 54 technical parameters, respectively. 

After a preliminary study, we made the number of technical parameters describing a structure 

independent of the number of its levels. This led to designing and training various machine learning 
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models whose number of inputs is the same. In particular, we considered all the global parameters, 

and the local parameters relative to the first and last levels of a structure.  

 

Table 2: Global and local technical parameters considered for two-, three- and four-level buildings.  

ID    Description 
𝐹𝐹0    Number of levels 
𝐹𝐹1    Average floor height 
𝐹𝐹2    Sides ratio (x-length / y-length) 
𝐹𝐹3    Average floor area 
𝐹𝐹4    Number of internal alignments of masonry wall in X-direction  
𝐹𝐹5    Number of internal alignments of masonry wall in Y-direction 
𝐹𝐹6    Area of the openings of the external masonry walls at the ground floor (GF) 
𝐹𝐹7    Area of the openings of the external masonry walls at the elevation floor (EF) 
𝐹𝐹8    Area of the openings of the internal masonry walls at the ground floor (GF) 
𝐹𝐹9    Area of the openings of the internal masonry walls at the elevation floor (EF) 
𝐹𝐹10    Average thickness of external masonry shear wall (GF) 
𝐹𝐹11    Average thickness of external masonry shear wall (EF) 
𝐹𝐹12    Average thickness of internal masonry shear wall (GF) 
𝐹𝐹13    Average thickness of internal masonry shear wall (EF) 
𝐹𝐹14    Average shear strength of masonry (GF) 
𝐹𝐹15    Average shear strength of masonry (EF) 
𝐹𝐹16    Average compressive strength of masonry (GF) 
𝐹𝐹17    Average compressive strength of masonry (EF) 
𝐹𝐹18    Masonry gross density (GF) 
𝐹𝐹19    Masonry gross density (EF) 
𝐹𝐹20    Elastic modulus (GF) 
𝐹𝐹21    Elastic modulus (EF) 
𝐹𝐹22    Shear modulus (GF) 
𝐹𝐹23    Shear modulus (EF) 
𝐹𝐹24    Effective shear area (GF) 
𝐹𝐹25    Effective shear area (EF) 
𝐹𝐹26    Seismic floor mass (EF) 
𝐹𝐹27    Seismic floor mass – roofing plan (RP) 
𝐹𝐹28    Ratio of Seismic floor mass /  Effective  shear area (GF) 
𝐹𝐹29    Ratio of Seismic floor mass /  Effective  shear area (EF) 

 

Regarding two-level buildings, we considered all 24 local technical  parameters (12 technical  

parameters per level); the 24 local technical parameters related to the first and last levels were 

considered for three- and four-level buildings. As a result, each building was described by a set of 

30 technical parameters as follows: 

● 12 local parameters regarding the first level; 
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● 12 local parameters regarding the last level; 

● 6 global parameters. 

Table 2 summarizes all the parameters used in the experiments. Parameters from 𝐹𝐹0 to 𝐹𝐹5 are global 

parameters; local parameters regarding the ground floor and elevation floor (last level) are indicated 

with (GF) and (EF) in the description, respectively. 

4. XAI MODELS 
 
The XAI models developed in this phase of the project are designed to take a specified set of 

technical parameters provided as input and predict the Peak Ground Acceleration (PGA) required 

for a building to reach the D3 limit state based on the roof displacement EDP. Each machine learning 

model thus solves a regression problem (see Section 2.1). Limit state D3 represents the situation 

where a building is not immediately usable after the seismic event, and the damage must be 

repaired before the building can be considered usable again. The D3 limit state is thus the state that 

distinguishes buildings that need repair after an earthquake from those that can be immediately 

used as they do not exhibit damage requiring immediate repair. The system architecture is 

represented in Figure 4. Each model may have different inputs based on optimization techniques to 

maximize the model performance, i.e., estimating the PGA for the D3 limit state with the lowest 

error possible. Estimating the PGA of the D3 limit state after an earthquake thus allows us to know 

which buildings reported a level of damage for which human intervention is required promptly to 

guarantee people’s security. 

 
Figure 4: Overview of the XAI model whose inputs are the structure’s technical parameters and the  
output is the peak ground acceleration (PGA) for the D3 state limit. 
 

In order to train the models and guarantee generalization capability, i.e., the independence of all 

the models from the training data, we divided the dataset into two disjoint sets: the training set and 
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the test set. The training set was used to select the most relevant technical parameters to estimate 

the PGA and optimize the various models. Model optimization involved finding the best 

hyperparameter configuration leading to the highest performance. The Sequential Feature Selection 

(SFS) approach selected the most relevant technical parameters. SFS reduces the dimensionality of 

the feature space by iteratively selecting a subset of the most informative features. The algorithm 

starts with an empty set S of selected features. At each iteration, the algorithm finds the feature 

that yields the highest improvement in the model’s performance and adds that feature to S. The 

algorithm terminates when a predefined number of features or performance levels are achieved.  

The SFS was executed for each regressor. The coefficient of determination, commonly denoted as 

R-squared (R²), was considered to select the feature to optimize the hyperparameters of that 

specific regressor.  R² is a statistical measure that assesses the proportion of the variance in the 

dependent variable explained by the independent variables, in a regression model. In other words, 

it quantifies the model's goodness of fit by indicating the percentage of variability in the response 

variable that can be accounted for by the predictor variables. Its equation is as follows: 

𝑅𝑅2 = 1 −�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

/  �(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

    

where 𝑦𝑦𝑖𝑖 represents the observed value of the dependent variable for the i-th observation, 𝑦𝑦�𝑖𝑖 is  the 

predicted value of the dependent variable for the i-th observation, and 𝑦𝑦𝑖𝑖  represents the mean of 

the observed values of the dependent variable, and 𝑁𝑁 is the number of observations. The numerator 

is the sum of squares of the residuals (the differences between the observed values and the 

predicted values), and the denominator is the total sum of squares, which measures the total 

variance in the dependent variable. The R² coefficient ranges from 0 to 1, where 0 indicates that the 

model does not explain any of the variance in the dependent variable, and 1 indicates that the model 

explains all the variance. A higher value suggests a better fit of the model to the data, although it 

should be supplemented with other diagnostic measures to ensure model validity. 

Each regressor was trained and tested using 10-fold cross-validation. In particular, the training set 

was divided into 10 folds (partitions), and the model was trained and evaluated 10 times, using 

different combinations of folds as training and test sets. SFS was repeated 30 times for each 

regressor, repopulating the folds after each of the 30 executions. This provides a more robust 

estimate of model performance. 
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Mean squared error (MSE) was used to measure the error of each of the 30 regressors on the test 

folds. The MSE of a regression model is defined as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 / 𝑁𝑁
𝑁𝑁

𝑖𝑖=1

 

where 𝑦𝑦𝑖𝑖 represents the observed value of the dependent variable for the i-th observation, 𝑦𝑦�𝑖𝑖 is  the 

predicted value of the dependent variable for the i-th observation,  and 𝑁𝑁 is the number of 

observations. MSE provides a measure of the average squared deviation between the predicted and 

actual values. A smaller MSE indicates a better fit of the model to the data. However, the MSE alone 

might not always provide sufficient information about model performance, which is why it is often 

used in conjunction with other evaluation metrics and domain knowledge. 

In more detail, the loss of a decision tree was used to select the features to optimize the 

hyperparameters of a decision tree and test it. As illustrated in the next section, this process led to 

selecting different technical parameters (i.e., features) for each model tested. 

Once the most relevant technical parameters were selected, the models were trained in order to 

search for the best configuration of hyperparameter values, using a grid search. To obtain a robust 

estimation of model performance, each model was trained and evaluated 10 times using 10-fold 

cross-validation. For each configuration of hyperparameters, 30 sessions based on 10-fold cross-

validation led to training 30 regressors. Folds were repopulated after each of the 30 training 

sessions. The error of each of the 30 regressors was measured by the MSE on the test folds. The 

performance, measured as R², was higher the lower the average of the 30 mean squared errors on 

the test folds.  

Grid search provides the best hyperparameter configuration that is then used to instantiate and 

train a new regressor using the entire training set. In fact, as a consequence of applying 10-fold 

cross-validation in SFS and grid search, only 90% of the data was used to train the models and 10% 

to test them. Each trained model was then tested using the test set, i.e., those data not used for 

training. Figures (a) in the next sections show the regression plot obtained on the test data. The two 

metrics used to evaluate the generalization ability of the models are the R² and mean absolute error 

(MAE), whose values are reported above the regression plot. The MAE of a regression model 

measures the average of the absolute differences between the actual and predicted values of the 

dependent variable. Mathematically, it is calculated as follows: 
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𝑀𝑀𝑀𝑀𝑀𝑀 = � |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖| / 𝑁𝑁
𝑁𝑁

𝑖𝑖=1

 

where 𝑦𝑦𝑖𝑖 represents the observed value of the dependent variable for the i-th observation, 𝑦𝑦�𝑖𝑖 is  the 

predicted value of the dependent variable for the i-th observation,  and 𝑁𝑁 is the number of 

observations. MAE provides a measure of the average absolute deviation between the predicted 

and actual values. Unlike MSE, MAE does not square the differences, which makes it less sensitive 

to outliers. 

 

4.1 XAI frameworks 
 
Two different frameworks were applied to provide explanations for the predictions of the trained 

machine learning models:  Local Interpretable Model-agnostic Explanations (LIME) and SHAP 

(SHapley Additive exPlanations). Both frameworks are designed to explain the predictions of 

machine learning models, especially those considered as black-box models. 

The primary goal of LIME is to make complex models interpretable on a local level, by approximating 

their behavior with simpler, interpretable models. The primary goal of LIME is to make complex 

models interpretable on a local level by approximating their behavior with simpler, interpretable 

models. Both LIME and SHAP frameworks are model-agnostic as they can be applied to any machine 

learning model without requiring knowledge of its internal structure. The LIME framework provides 

local explanations and may not capture the global behavior of the model. In contrast, the SHAP 

values provide insights into model behavior at both the local and global levels. 

 

4.1.1 Local Interpretable Model-agnostic Explanations (LIME) 
 
LIME starts by selecting a specific instance or data point to interpret the model's prediction. The 

framework then generates perturbed samples around the selected instance by introducing small 

changes to the feature values. These samples are used to probe the model's behavior locally. The 

perturbed samples are then passed through the black-box model to obtain predictions. LIME collects 

the predictions and the corresponding perturbed samples to train a local, interpretable model, such 

as a linear model or decision tree, that approximates the behavior of the complex model in the 

vicinity of the selected instance. The local surrogate model is then analyzed to provide insights into 

the factors influencing the prediction for the chosen instance. This analysis yields feature 
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importance scores highlighting the contribution of each feature to the model's decision locally. 

 

4.1.2 SHapley Additive exPlanations (SHAP) 
 
SHAP was developed based on cooperative game theory. SHAP values provide a way to fairly 

distribute the value of a model's prediction among its features. This approach is grounded in the 

concept of Shapley values, which were originally introduced for fair distribution of payouts in 

cooperative games. SHAP values are rooted in Shapley values, representing each feature's average 

contribution to all possible coalitions in a cooperative game. In the context of machine learning, the 

features are considered players, and their contributions are determined based on their impact on 

the model's predictions. SHAP considers all possible combinations of features (coalitions) and 

evaluates their impact on the model's output. This involves generating subsets of features and 

comparing the model's predictions with and without each feature. Shapley values are calculated by 

averaging the marginal contributions of each feature across all possible coalitions. This process 

ensures a fair distribution of the prediction value among the individual features. SHAP values 

provide a clear interpretation of the impact of each feature on a specific prediction. Positive SHAP 

values indicate a positive contribution to the prediction, while negative values suggest a negative 

impact. SHAP values adhere to the principles of consistency and linearity. Consistency ensures that 

the sum of SHAP values for all features equals the difference between the model's output for a 

specific instance and the average output across all instances. Linearity allows the aggregation of 

SHAP values across different instances to understand feature importance at a global level. SHAP 

offers a comprehensive and theoretically grounded approach to interpreting complex model 

predictions by attributing contributions to individual features. 

 

4.2 Decision Tree 
 
Decision trees are a versatile and intuitive approach to solving classification and regression 

problems. With their ability to mimic human decision-making processes, decision trees offer a 

transparent and interpretable framework for analyzing complex data, making them invaluable tools 

across various domains, from finance and healthcare to marketing and environmental science.  

A decision tree is a hierarchical tree-like structure comprising nodes representing decision points 

and branches denoting possible outcomes or choices. The tree is constructed recursively by 
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partitioning the feature space based on the values of input variables, with each node representing 

a specific feature and each branch representing a possible decision or outcome. This hierarchical 

arrangement facilitates a step-by-step decision-making process, where the data is split into 

increasingly homogeneous subsets until a prediction or decision is reached at the leaf nodes. One 

of the key strengths of decision trees lies in their simplicity and interpretability.  

Unlike complex black-box models such as neural networks, decision trees offer a transparent and 

easily understandable representation of the decision-making process. Each split in the tree 

corresponds to a simple decision rule based on a single feature, making it straightforward to 

interpret and explain the rationale behind the model's predictions. Furthermore, decision trees are 

highly flexible and capable of handling both categorical and numerical data, as well as multi-class 

classification and multi-output regression tasks. They can also accommodate missing values and 

noisy data, making them robust in real-world scenarios where data quality may vary. Additionally, 

decision trees naturally handle interactions and nonlinear relationships between features without 

requiring explicit feature engineering or transformation.  

Despite their simplicity, decision trees can yield powerful predictive models, especially when 

combined with ensemble techniques such as random forests and gradient boosting. These ensemble 

methods leverage the collective wisdom of multiple decision trees to improve predictive accuracy 

and generalization performance while retaining individual trees' interpretability. However, like any 

machine learning algorithm, decision trees have limitations. They are prone to overfitting, especially 

when the tree depth is not properly constrained or when the dataset is noisy or highly imbalanced. 

Techniques such as pruning, limiting the maximum depth of the tree, or using ensemble methods 

are often employed to mitigate overfitting. Moreover, decision trees may struggle with capturing 

complex patterns or interactions in the data, particularly when the decision boundaries are non-

linear or when the relationships between features are intricate. More sophisticated models like 

neural networks or support vector machines may perform better in such cases. In summary, decision 

trees represent a powerful and interpretable approach to machine learning, offering a balance 

between simplicity, flexibility, and predictive performance. With their ability to elucidate decision-

making processes and handle a wide range of data types and tasks, decision trees continue to be a 

cornerstone of modern machine learning methodologies, empowering practitioners to extract 

valuable insights and make informed decisions from complex datasets. 
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Figure 5: Regression plot for the decision tree model. 

 

 
Figure 6: Beeswarm plot (left-hand side) and bar plot (right-hand side) show the distribution of the 
impact of each feature on the output of the decision tree model. 
 

 
Figure 7: Explanation by LIME (left-hand side) and SHAP (right-hand side) for a representative 
structure whose PGA value for D3 limit state is calculated by the decision tree model. 
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After the SFS, the most selected features were 7: number of level, area of the openings of the 

external masonry walls at the elevation floor (EF), average thickness of internal masonry shear wall 

(EF), average shear strength of masonry (GF), shear modulus (GF), effective shear area (GF), 

effective shear area (EF). 

Figure 5 shows the regression plot, which highlights the relationship between two variables, 

typically, an independent variable (X) and a dependent variable (Y). This type of plot is often used in 

regression analyses to understand the relationship between variables and visualize how a regression 

model approximates the data. The regression line represents the best possible fit to the data 

according to the regression model used. For linear regression, for example, the line represents the 

line of best fit. The shape of the regression line and its slope indicate the nature of the relationship 

between the variables. If the line is a straight line, the relationship is linear. If it is a curve, the 

relationship may be nonlinear. The slope of the line indicates how much the dependent variable 

changes relative to a unit change in the independent variable. The regression plot may sometimes 

include a confidence interval around the regression line. This interval represents the expected 

variability in the model estimate. The wider the interval, the greater the uncertainty in the estimate. 

Points that deviate significantly from the regression line can be identified as influential points. These 

points may significantly impact model estimation and require further investigation. 

Figure 6 shows the beeswarm and the bar plots generated by SHAP. The beeswarm plot is a 

visualization that combines the idea of a swarm plot with SHAP information. In a swarm plot, data 

are distributed along the x-axis so as to avoid overlap. In the context of SHAP, swarm plots are used 

to show the distribution of SHAP values for each feature. Each point in the swarm plot represents a 

specific instance of the data, and the position along the x-axis indicates the corresponding SHAP 

value. This type of visualization is particularly useful for observing how SHAP contributions vary 

across different data instances. The SHAP plot bar is a graphical representation that shows the 

relative importance of different features in contributing to model output. Each bar represents a 

feature, and the length of the bar indicates how much the presence of that feature contributes to 

the model output. The bars can be oriented ascending or descending depending on the sign of the 

contribution (positive or negative). This type of visualization is useful for quickly identifying the most 

influential features in the model and understanding how each contributes to the final output. In 
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either case, these plots provide an intuitive way to interpret the contribution of each feature in the 

context of the model. They can be used to identify patterns, outliers, and understand how features 

affect the machine learning model's predictions. 

Figure 7 shows the LIME and SHAP plots relative to a representative structure in order to explain 

how the model came to the PGAD3 value. Specifically, throughout the deliverable, the green points 

in the regression plot correspond to structures whose error in estimating the peak ground 

acceleration for the D3 limit state is close to the MAE. Conversely, the orange points represent 

structures for which the model makes an error exceeding twice the MAE when predicting the PGA 

for the D3 limit state. 

The result achieved by this model is quite accurate (see the regression plot) and also makes sense 

in structural engineering. As the plots in Figure 6 show, the shear modulus (GF), the effective shear 

area (GF), and the area of the openings of the external masonry walls at the elevation floor (EF) are 

the technical parameters that most influence the output of the XAI model. For a particular building, 

the XAI model suggests that the PGA needed to trigger the D3 limit state is highly influenced by two 

key factors: the  effective shear area at the ground floor (GF) and the area of the openings of the 

external masonry walls at the elevation floor (EF) (LIME plot, left-hand side). This aligns with 

structural engineering principles. The  effective  shear area (GF) likely relates to how well structural 

elements resist lateral loads induced by seismic events. A higher  effective  shear area (GF) implies 

better resistance to lateral forces, potentially lowering the likelihood of reaching the D3 limit state 

during strong ground acceleration. Similarly, the area of the openings of the external masonry walls 

at the elevation floor (EF) is important. External walls operate as seismic resistance elements, 

counteracting earthquake-induced lateral forces. However, openings reduce their capacity to resist 

lateral forces and increase the susceptibility of the structure to reaching the D3 limit state. 

Although the explanation aligns with structural engineering, the decision tree model did not 

perform best compared to the other models, as highlighted by the 𝑅𝑅2 coefficient equal to 0.8769. 

Nevertheless, the MAE was limited to 0.0095, which means that the average error when predicting 

the PGA is quite low. 
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4.3 K-Nearest Neighbors 
 
Unlike traditional algorithms, K-Nearest Neighbors (K-NN) does not involve explicit model training 

as it relies on stored training data to predict new instances. In K-NN, the K represents the number 

of nearest neighbors considered when predicting a new instance's class (for classification) or value 

(for regression). The algorithm calculates the similarity between instances using a distance metric, 

often the Euclidean or Manhattan distance. For classification, the majority class among the K-

nearest neighbors determines the predicted class for the new instance. In regression, the algorithm 

computes the average (or weighted average) of the target values of the K-nearest neighbors, 

providing the predicted value for the new instance. K-NN does not explicitly learn a decision 

boundary; instead, it adapts to the distribution of training data in the feature space, making it 

suitable for non-linear decision boundaries. The choice of K is critical, with smaller values leading to 

more sensitive models and larger values resulting in smoother decision boundaries. Feature scaling 

is crucial in K-NN, as it relies on distance calculations, and different feature scales can impact results. 

The computational cost during prediction may be high, especially for large datasets or high-

dimensional feature spaces, as it needs to calculate distances for each query instance against all 

training instances. While K-NN is simple and versatile, its efficiency depends on the size and 

characteristics of the dataset. It is well-suited for smaller to medium-sized datasets but may face 

challenges with larger datasets due to computational requirements. 

 
Figure 8: Regression plot for the K-Nearest Neighbors model. 
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Figure 9: Beeswarm plot (left-hand side) and bar plot (right-hand side) show the distribution of the 
impact of each feature on the output of the K-Nearest Neighbors model. 

 

 
Figure 10: Explanation by LIME (left-hand side) and SHAP (right-hand side) for a representative 
structure whose PGA value for D3 limit state is calculated by the K-Nearest Neighbors model. 
 
 
After the SFS, the most selected features were 12: number of level, number of internal alignments 

of the masonry wall, area of the openings of the external masonry walls at the ground floor (GF), 

area of the openings of the external masonry walls at the elevation floor (EF), area of the openings 

of the internal masonry walls at the elevation floor (EF), the average thickness of external masonry 

shear wall (GF), average thickness of internal masonry shear wall (GF), average shear strength of 

masonry (GF), elastic modulus (GF), shear modulus (GF),  effective shear area (GF), seismic floor 



 
                                        MULTIDIMENSIONAL SEISMIC RISK ASSESSMENT COMBINING STRUCTURAL DAMAGES AND  

                                       PSYCHOLOGICAL CONSEQUENCES USING EXPLAINABLE ARTIFICIAL INTELLIGENCE 

 

27 

 
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the 

European Union. Neither the European Union nor the granting authority can be held responsible for them. 

mass – roofing plan (RP). 

Figure 8 shows the regression plot, whereas Figure 9 and Figure 10 show the plots relative to the 

global explanation and to the local explanation (i.e., explanation relative to a representative 

structure), respectively. The result achieved by this model is very accurate (see the regression plot) 

and also makes sense in structural engineering. 

Although the K-Nearest Neighbors model did not perform best compared to the other models, it 

achieved a higher 𝑅𝑅2 coefficient than that obtained with the decision tree model. In particular, the 

K-Nearest Neighbors model achieves an 𝑅𝑅2 coefficient equal to 0.9499 and an MAE equal to 0.0056, 

which is a very low average error in predicting the PGA. 

 

4.4 Extreme Gradient Boosting 
 
XGBoost, short for eXtreme Gradient Boosting, is an advanced implementation of the gradient 

boosting framework. It is a powerful and efficient machine learning algorithm that excels in 

regression and classification tasks. XGBoost is renowned for its speed, accuracy, and versatility, 

making it a popular choice in various data science competitions and real-world applications. 

XGBoost builds an ensemble of weak learners, usually decision trees, in a sequential manner. Each 

tree corrects the errors made by the previous ones, gradually improving the model's predictive 

performance. The term gradient boosting reflects the algorithm's focus on minimizing the gradient 

of the loss function with respect to the model's predictions. 

Key features of XGBoost include its ability to handle missing data, regularization techniques to 

prevent overfitting, and the flexibility to customize the loss function based on the specific problem 

requirements. XGBoost leverages parallel and distributed computing, optimizing its computational 

efficiency and scalability. The algorithm introduces a few innovations, such as tree pruning, which 

helps prevent overfitting by removing nodes that contribute minimally to the model's improvement. 

XGBoost also incorporates a regularization term in the objective function, controlling the complexity 

of individual trees. 

XGBoost's training process involves creating a sequence of decision trees, with each subsequent 

tree aiming to correct the errors of the combined ensemble. The final prediction is obtained by 

summing the contributions of all the trees, weighted by their respective learning rates. In addition 

to its high predictive performance, XGBoost provides valuable insights into feature importance. By 



 
                                        MULTIDIMENSIONAL SEISMIC RISK ASSESSMENT COMBINING STRUCTURAL DAMAGES AND  

                                       PSYCHOLOGICAL CONSEQUENCES USING EXPLAINABLE ARTIFICIAL INTELLIGENCE 

 

28 

 
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the 

European Union. Neither the European Union nor the granting authority can be held responsible for them. 

analyzing the contribution of each feature across the ensemble, users better understand the factors 

influencing the model's decisions. XGBoost's popularity stems from its efficiency, scalability, and 

state-of-the-art performance across various machine learning tasks. Its successful integration of 

boosting techniques with tree-based models has positioned it as a leading algorithm in the machine 

learning landscape. 

 
Figure 11: Regression plot for the Extreme Gradient Boosting model. 

 

 
Figure 12: Beeswarm plot (left-hand side) and bar plot (right-hand side) show the distribution of the 
impact of each feature on the output of the Extreme Gradient Boosting model. 
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Figure 13: Explanation by LIME (left-hand side) and SHAP (right-hand side) for a representative 
structure whose PGA value for D3 limit state is calculated by the Extreme Gradient Boosting model. 
 

After the SFS, the most selected features were 10: number of level, area of the openings of the 

external masonry walls at the elevation floor (EF), area of the openings of the internal masonry walls 

at the ground floor (GF), average shear strength of masonry (GF), masonry gross density (EF), elastic 

modulus (GF),  effective shear area (GF),  effective shear area (EF), seismic floor mass (EF), ratio of 

seismic floor mass/ effective  shear area (GF). 

Figure 11 shows the regression plot, whereas Figure 12 and Figure 13 show the plots relative to the 

global explanation and to the local explanation (i.e., explanation relative to a representative 

structure), respectively. 

The result achieved by this model is very accurate (see the regression plot) and also makes sense in 

structural engineering. As the beeswarm and the bar plots show, area of the openings of the 

external masonry walls at the elevation floor (EF), the elastic modulus (GF), and the  effective  shear 

area (GF) are the technical parameters that most influence the output of the model. Even if eXtreme 

Gradient Boosting model uses fewer features, it performs worse than the K-Nearest Neighbors 

model, as highlighted by the 𝑅𝑅2coefficient. 

 

4.5 Light Gradient Boosting Machine 
 
LightGBM, short for Light Gradient Boosting Machine, is a high-performance, distributed gradient 

boosting framework designed to efficiently train large datasets and handle categorical features. 

Developed by Microsoft, LightGBM is particularly well-suited for problems in machine learning 
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where both speed and accuracy are crucial. LightGBM employs a histogram-based learning 

approach to construct decision trees during the boosting process. Instead of using traditional depth-

first or level-wise tree growth strategies, LightGBM uses a leaf-wise approach. This allows the 

algorithm to quickly grow trees and prioritize splitting nodes, leading to greater loss function 

reductions. One notable feature of LightGBM is its ability to handle categorical features directly 

without needing one-hot encoding. This reduces memory usage and computational costs associated 

with encoding categorical variables, making LightGBM especially efficient for datasets with a large 

number of categorical features. LightGBM incorporates regularization techniques such as L1 and L2 

regularization on leaf values and feature-wise binomial or Gaussian likelihood to address overfitting 

concerns. Additionally, it implements a technique called Gradient-based One-Side Sampling (GOSS) 

to efficiently select a subset of data points for training, reducing computation while retaining the 

overall gradient information. LightGBM supports parallel and distributed computing, making it 

suitable for large-scale datasets. It also offers GPU acceleration, further enhancing its training speed. 

The flexible framework allows users to customize various hyperparameters to fine-tune model 

performance. Due to its efficiency and scalability, LightGBM has gained popularity in both research 

and industry settings. It has proven effective in classification, regression, and ranking tasks. It is 

widely used in machine learning competitions and real-world applications where rapid model 

training and high predictive accuracy are paramount. 

 
Figure 14: Regression plot for the Light Gradient Boosting Machine model. 
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Figure 15: Beeswarm plot (left-hand side) and bar plot (right-hand side) showing the distribution of 
the impact of each feature on the output of the Light Gradient Boosting Machine model. 
 

 
Figure 16: Explanation by LIME (left-hand side) and SHAP (right-hand side) for a representative 
structure whose PGA value for D3 limit state is calculated by Light Gradient Boosting Machine. 
 

After the SFS, the most selected features were 10: number of level, area of the openings of the 

external masonry walls at the ground floor (GF), average shear strength of masonry (GF), average 

shear strength of masonry (EF), elastic modulus (GF), shear modulus (EF),  effective  shear area (EF), 

ratio of Seismic floor mass/ effective  shear area (EF). 

Figure 14 shows the regression plot, whereas Figure 15 and Figure 16 show the plots relative to the 

global explanation and to the local explanation (i.e., explanation relative to a representative 

structure), respectively. 

The result achieved by this model is the most accurate (see the regression plot) and also makes 

sense in structural engineering. As the beeswarm and the bar plots show, the area of the openings 

of the external masonry walls at the ground floor (GF) and the  effective shear area (EF) are the 
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technical parameters that most influence the output of the model. The Light Gradient Boosting 

Machine achieved an 𝑅𝑅2coefficient equal to 0.9531. Also, the MAE was limited to 0.0056, which 

means that the average error when predicting the PGA is very low. 

 

4.6 Random Forest 
 
Among the various machine learning methodologies, the random forest algorithm combines 

predictive performance and interpretability. This unique blend of accuracy and transparency has 

propelled random forest to the forefront of data-driven decision-making across various domains. 

Random forest uses the power of ensemble learning, where multiple decision trees collaborate to 

form a predictive model. Each decision tree is trained on a random subset of the training data and 

features, fostering diversity within the ensemble. During inference, the collective decisions of these 

individual trees are aggregated, resulting in a robust and reliable prediction that reflects the wisdom 

of the forest. While the primary objective of random forest is undoubtedly predictive accuracy, its 

inherent structure also offers a gateway to understanding and explaining the complex dynamics of 

the underlying data. Unlike opaque black-box models, random forest provides a clear and intuitive 

representation of the decision-making process, allowing practitioners to dissect the model's inner 

workings easily. By delving into the constituent decision trees within the forest, experts can uncover 

the rationale behind each prediction and identify the key features driving model behavior. This 

analysis highlights the factors that influence individual predictions and sheds light on the broader 

patterns and relationships inherent in the dataset. In addition, random forest offers a built-in 

mechanism for assessing feature importance, enabling practitioners to gauge the relative 

contribution of each input variable to the model's predictions. This feature importance analysis not 

only aids in feature selection and dimensionality reduction but also provides valuable insights into 

the underlying mechanisms shaping the data. Random forest's resilience to noisy or imbalanced 

datasets also enhances its interpretability capabilities, ensuring the model's explanations remain 

robust and trustworthy in real-world complexities. By incorporating randomness into the training 

process and aggregating the predictions of multiple trees, random forest mitigates the risk of 

overfitting. It generalizes effectively to unseen data, bolstering the reliability of its explanations. 
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Figure 17: Regression plot for the Random Forest model. 

 

 
Figure 18: Beeswarm plot (left-hand side) and bar plot (right-hand side) show the distribution of the 
impact of each feature on the output of the Random Forest model. 
 

As a consequence of the SFS, the most selected features were 9: number of level, number of internal 

alignments of masonry wall, area of the openings of the external masonry walls at the ground floor 

(GF), area of the openings of the external masonry walls at the elevation floor (EF), average thickness 

of internal masonry shear wall (GF), average compressive strength of masonry (GF), shear modulus 

(EF),  effective shear area (EF). 

Figure 17 shows the regression plot, whereas Figure 18 and Figure 19 show the plots relative to the 

global explanation and to the local explanation (i.e., explanation relative to a representative 

structure), respectively. 
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Figure 19: Explanation by LIME (left-hand side) and SHAP (right-hand side) for a representative 
structure whose PGA value for D3 limit state is calculated by the Random Forest model. 
 

The result achieved by this model is accurate (see the regression plot) and also makes sense in 

structural engineering. As the beeswarm and the bar plots show, the average compressive strength 

of masonry (GF) and the area of the openings of the external masonry walls at the ground floor (GF) 

are the technical parameters that most influence the output of the model. The XAI model suggests 

that these two technical parameters influence the prediction of the PGA needed to trigger the D3 

limit state for a particular building. Although the random forest model uses only 9 features, it 

achieves an 𝑅𝑅2 coefficient equal to 0.9474 and an MAE  limited to 0.0057. 

 

4.7 Gradient Boosting 
 
Gradient Boosting is a machine learning ensemble technique that builds a predictive model in a 

sequential manner by combining the predictions of weak learners, usually decision trees. The 

primary goal of Gradient Boosting is to improve predictive accuracy by focusing on the mistakes 

made by the previous models in the ensemble. The process begins with an initial weak learner, 

typically a shallow decision tree, which makes predictions on the training data. Subsequent weak 

learners are then added sequentially to the ensemble, with each new learner aiming to correct the 

errors of the combined ensemble so far. The key innovation of Gradient Boosting lies in its focus on 

the gradient of the loss function with respect to the model's predictions. In each iteration, the 

algorithm fits a new weak learner to the negative gradient of the loss function, effectively moving 
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the model towards the direction of the steepest decrease in the loss. The learning rate parameter 

controls the contribution of each weak learner to the ensemble. A smaller learning rate makes the 

process more conservative by reducing the impact of each new learner, while a larger learning rate 

allows the model to learn more quickly but might lead to overfitting. Gradient Boosting can handle 

various loss functions, making it versatile for regression, classification, and ranking problems. 

Common loss functions include mean squared error for regression and logistic loss for binary 

classification. While Gradient Boosting is a powerful technique with high predictive accuracy, it can 

be computationally expensive and prone to overfitting, especially if the model is allowed to become 

too complex. Regularization techniques, early stopping, and tuning hyperparameters are common 

strategies to address these challenges and achieve a well-balanced model. 

 
Figure 20: Regression plot for the Gradient Boosting model. 

 

After the SFS, the most selected features were 15: Number of level, Number of internal alignments 

of masonry wall in the X-direction, Number of internal alignments of masonry wall in the Y-direction, 

Area of the openings of the external masonry walls at the ground floor (GF), Area of the openings 

of the external masonry walls at the elevation floor (EF), Area of the openings of the internal 

masonry walls at the ground floor (GF), Average thickness of external masonry shear wall (GF), 

Average thickness of external masonry shear wall (EF), Average shear strength of masonry (GF), 

Masonry gross density (EF), Shear Modulus (GF), Shear Modulus (EF),  effective shear area (EF), Ratio 

of Seismic floor mass/ effective  shear area (GF), Ratio of Seismic floor mass to effective  shear area. 
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Figure 21: Beeswarm plot (left-hand side) and bar plot (right-hand side) show the distribution of the 
impact of each feature on the output of the Gradient Boosting model. 

 

Figure 22: Explanation by LIME (left-hand side) and SHAP (right-hand side) for a representative 
structure whose PGA value for D3 limit state is calculated by the Gradient Boosting model. 
 

Figure 20 shows the regression plot, whereas Figure 21 and Figure 22 show the plots relative to the 

global explanation and to the local explanation (i.e., explanation relative to a representative 

structure), respectively. 

The result achieved by this model is quite accurate (see the regression plot) and also makes sense 

in structural engineering. As the beeswarm and the bar plots show, the shear modulus (GF) and the 

area of the openings of the external masonry walls at the elevation floor (EF) are the technical 
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parameters that most influence the output of the model. Although the gradient boosting model 

uses more technical parameters than other models, it did not achieve the best 𝑅𝑅2 coefficient. 

 

4.8 Adaptive Boosting 
 
AdaBoost, short for Adaptive Boosting, is a machine learning ensemble method that combines weak 

learners' predictions to create a strong and accurate predictive model. The key idea behind 

AdaBoost is to give more weight to the instances that are misclassified by the current weak learners 

in each iteration, allowing subsequent weak learners to focus on the harder-to-predict instances. 

The process begins with an initial weak learner, which could be a simple model like a decision stump 

(a one-level decision tree). After the first learner is trained, AdaBoost increases the weights of 

misclassified instances and decreases the weights of correctly classified instances. This adjusted 

dataset is then used to train the next weak learner, and the process repeats. Each weak learner is 

assigned a weight based on its accuracy in predicting the instances. The final prediction of the 

AdaBoost model is a weighted sum of the individual weak learners, with higher weights given to 

more accurate learners. AdaBoost's adaptability lies in its ability to sequentially emphasize 

misclassified instances, guiding subsequent learners to improve in areas where the model struggles. 

This iterative process continues until a predefined number of weak learners have been trained or a 

specified level of accuracy is achieved. AdaBoost is particularly effective in improving the 

performance of weak learners, and it is less prone to overfitting than training a single, more complex 

model. It is versatile and can be applied to binary classification and regression problems. 

One notable aspect of AdaBoost is that it is sensitive to noisy data and outliers. Outliers might 

significantly impact the learning process as the algorithm adapts to misclassified instances. To 

mitigate this, data preprocessing techniques and robust weak learners can be employed. Overall, 

AdaBoost is a powerful algorithm for boosting the performance of weak learners, providing a robust 

and accurate predictive model across a range of machine learning tasks. 
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Figure 23: Regression plot for the Adaptive Boosting model. 

 
Figure 24: Beeswarm plot (left-hand side) and bar plot (right-hand side) show the distribution of the 
impact of each feature on the output of the Adaptive Boosting model. 

 

 

Figure 25: Explanation by LIME (left-hand side) and SHAP (right-hand side) for a representative 
structure whose PGA value for D3 limit state is calculated by the Adaptive Boosting model. 
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After the SFS, the most selected features were 8: Number of level, Number of internal alignments 

of masonry wall in X-direction, Area of the openings of the external masonry walls at the ground 

floor (GF), Area of the openings of the external masonry walls at the elevation floor (EF), Average 

thickness of external masonry shear wall (EF), Average shear strength of masonry (GF),  Effective  

shear area (EF), Ratio of Seismic floor mass/ effective shear area (GF). 

Figure 23 shows the regression plot, whereas Figure 24 and Figure 25 show the plots relative to the 

global explanation and to the local explanation (i.e., explanation relative to a representative 

structure), respectively. 

The result achieved by this model is accurate (see the regression plot) and also makes sense in 

structural engineering. As the beeswarm and the bar plots show, the average shear strength of 

masonry (GF), the number of internal alignments of masonry wall, and the effective shear area (EF) 

are the technical parameters that most influence the output of the model. IAdaptive boosting uses 

only 8 technical parameters to predict the PGA. However, it achieves an 𝑅𝑅2 coefficient equal to 

0.9459 with an MAE limited to 0.0061, which are worse than those achieved by the Bootstrap 

Aggregating model. 

 

4.9 Bootstrap Aggregating 
 
Bagging, short for Bootstrap Aggregating, is an ensemble learning technique used to improve the 

accuracy and stability of machine learning models. The fundamental idea behind bagging is to create 

multiple independent instances of a base learning algorithm by training each instance on a different 

subset of the original training data. The process begins by randomly selecting subsets, with 

replacements, from the training data. Since sampling is done with replacement, some instances may 

appear more than once in a subset, while others may not be included at all. These subsets are used 

to train individual base models, often referred to as weak learners or base learners. After training, 

predictions from each base model are combined through a process of averaging (for regression 

tasks) or voting (for classification tasks). This ensemble approach helps reduce the variance of the 

model, improving its generalization performance on unseen data. One of the key advantages of 

bagging is that it provides a way to address overfitting, especially in the context of high-variance 

models. By creating diverse subsets of the data for each base learner, bagging helps ensure that the 
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ensemble is less sensitive to noise and outliers in the training data. One popular algorithm that 

utilizes bagging is the Random Forest, where the base learners are decision trees. Random Forest 

builds multiple trees by bootstrapping the data and introducing additional randomness during tree-

building. The final prediction is then obtained by aggregating the predictions of all individual trees. 

Bagging is a versatile technique applicable to various machine learning algorithms, and it is 

particularly effective when dealing with complex models prone to overfitting. It provides a 

straightforward and effective approach to enhance model robustness and improve predictive 

performance. 

 
Figure 26: Regression plot for the Bootstrap Aggregating model. 

 

 

 
Figure 27: Beeswarm plot (left-hand side) and bar plot (right-hand side) show the distribution of the 
impact of each feature on the output of the Bootstrap Aggregating model. 
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Figure 28: Explanation by LIME (left-hand side) and SHAP (right-hand side) for a representative 
structure whose PGA value for D3 limit state is calculated by the Bootstrap Aggregating model. 
 

After the SFS the most selected features were 6: Number of level, Area of the openings of the 

external masonry walls at the elevation floor (EF), Average shear strength of masonry (GF), Shear 

Modulus (GF), Effective shear area  (GF), Effective  shear area (EF). 

Figure 26 shows the regression plot, whereas Figure 27 and Figure 28 show the plots relative to the 

global explanation and to the local explanation (i.e., explanation relative to a representative 

structure), respectively. 

The result achieved by this model is quite accurate (see the regression plot) and also aligns with 

structural engineering. As the beeswarm and the bar plots show, the shear modulus (GF), the 

effective shear area (GF), and the area of the openings of the external masonry walls at the elevation 

floor (EF) are the technical parameters that most influence the output of the model.  

Bootstrap Aggregating achieves the best 𝑅𝑅2 coefficient and the best MAE, which are equal to 0.9536 

and 0.0057, respectively. Although the MAE is equal to that achieved by the Light Gradient Boosting 

Machines, the  Bootstrap Aggregating model needs fewer technical parameters as input to predict 

the PGA. 

 

4.10 Discussion on the influence of technical parameters on the PGAD3 

 
According to the XAI models presented, the technical parameters of the masonry buildings that 

most influence the PGAD3 are the shear modulus at GF (F22), the effective shear area at GF (F24), 

and the area of the openings of the external masonry walls at GF (F7). This is consistent with the 

mechanics of masonry structures.  
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The attainment of severe damage to a masonry structure as a consequence of seismic action is often 

associated with the shear failure of its masonry panels. The shear failure of a masonry panel occurs 

when the shear force acting on the panel attains its shear strength, which is proportional to the 

product of the cross-sectional area of the panel by the shear strength of the masonry. The overall 

capacity of a masonry structure to resist lateral forces produced by seismic actions is thus affected 

by the product of the effective shear area (which is in turn affected by the number of openings) by 

the shear strength of the masonry.   

It should be noted that the openings in the external walls affect the seismic capacity more than 

those in the internal walls due to torsional effects which occur when the center of rigidity does not 

coincide with the center of mass. The influence of the shear modulus is also consistent with the 

mechanics of masonry structures because the shear modulus influences the lateral stiffness of the 

structure and, as a consequence, its natural period, which, in turn, affects the lateral force applied 

to the structure for a given intensity of the seismic action. 

Some XAI models (e.g., the Random Forest) identify the masonry compressive strength (F16 and F17) 

as an essential parameter affecting the seismic performance of the masonry buildings. From the 

structural point of view, this is related to attaining the flexural capacity of masonry panels when the 

structure is subject to seismic actions. 
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5. CONCLUSIONS 
 
 
This deliverable has presented the XAI models designed and developed to predict the damage to 

structures after a seismic event using benchmark structures similar to those in the pilot areas, which 

will be the focus of the case study. The Bootstrap Aggregating model achieved the best 

performance, with an R2 coefficient of 0.9536 and a mean absolute error of 0.0057. 

Also, the explanations provided by the models were consistent with the foundational aspects of 

structural engineering. This means that the developed models can provide explanations that help 

experts understand the reasoning behind each model prediction. Therefore, we can affirm that the 

designed and developed artificial intelligence models resulted precisely in line with the initial 

requirements and fully met the predetermined expectations. 
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APPENDIX 
 
This appendix presents new case studies involving reinforced concrete structures instead of 

masonry structures. We started to generate the technical parameters for this new building type. 

The resulting analysis will be carried out in a similar manner to that presented in this deliverable 

that was carried out for masonry buildings. 

 

Reinforced Concrete building (RC) 

The input parameters are divided into three macro categories. Specifically, the first is focused on 

the geometric parameters characterizing the structure at the global level. At the global geometry 

level, the parameters are the number of floors underground (number of underground levels) and 

the number of floors in elevation (number of floors) of which the concrete structure is composed. 

In addition to defining the floors, the structure’s total height is identified after identifying the seismic 

zero (Estimate building height). In the geometry of the concrete structure, the total length of the 

building in the X- and Y-direction (total length X-side and total length Y-side) is also reported. 

The second macro category focuses on the mechanical parameters characterizing reinforced 

concrete structures, such as the normal stress acting in the ground floor column, three categories 

of columns belonging to 3 different zones within the structure are considered (Average stress in the 

columns in the corner at the ground floor, Average stress in the external column at the ground floor 

and Average stress in the internal columns at the ground floor). This category also includes the ratio 

between maximum floor eccentricity and minimum floor eccentricity (Ratio between 

maximum/minimum eccentricity). Additionally, the frame stiffness is determined, then the ratio of 

the column stiffness to the beam stiffness of all frames in the X-direction and Y-direction is made, 

then for each direction, the maximum and minimum values are compared (Ratio between 

maximum/minimum stiffness X direction, Ratio between maximum/minimum stiffness Y direction). 

The parameters belonging to the second macro category manage to describe in depth, and to the 

point, the mechanical behavior of structural elements (columns and beams). Thus, in the second 

category, all mechanical parameters of concrete and steel are indirectly considered. 

Finally, the last macro category is focused on the Seismic Analysis, taking into consideration, the 

mass of the individual floor the floor with the highest and the one with the lowest mass is identified 
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and then the comparison is made (Seismic floor mass MAX / Seismic floor mass MIN), then the ratio 

between the maximum and the minimum value of the ratio of the seismic mass of a floor with the 

total area of resistant concrete for that floor is identified (Parameter between the max and the min 

(Ratio of Seismic floor mass / Concrete area)). In this category, the period of the structure (Period of 

the structure) is evaluated through a simplified method and the shear force at the base (Shear force 

at the base). 

The number of input data for reinforced concrete structures does not depend on the number of 

floors since the ratio of the maximum value to the minimum value of the parameter under 

consideration is used. Therefore, in such structures, there are 15 global parameters. 

Based on considerations by structural engineering experts, this deliverable describes each building 

by 15 global technical parameters. After a preliminary study, we made the number of technical 

parameters describing a structure independent of the number of its floors. Table 3 summarizes all 

the parameters used in the experiments.  

 

 Table 3: Technical parameters for reinforced concrete buildings. 

ID    Description 
𝐹𝐹0    Number of underground levels 
𝐹𝐹1    Number of floors 
𝐹𝐹2    Estimate building height 
𝐹𝐹3    Total length X-side 
𝐹𝐹4    Total length Y-side 
𝐹𝐹5    Seismic floor mass MAX / Seismic floor mass MIN 
𝐹𝐹6    Parameter between the max and the min (Ratio of Seismic floor mass/ Concrete area) 
𝐹𝐹7    Average stress in the columns in the corner at the ground floor 
𝐹𝐹8    Average stress in the external column at the ground floor 
𝐹𝐹9    Average stress in the internal columns at the ground floor 
𝐹𝐹10    Ratio between maximum/minimum eccentricity 
𝐹𝐹11    Ratio between maximum/minimum stiffness X direction 
𝐹𝐹12    Ratio between maximum/minimum stiffness Y direction 
𝐹𝐹13    Period of the structure 
𝐹𝐹14    Shear force at the base 
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