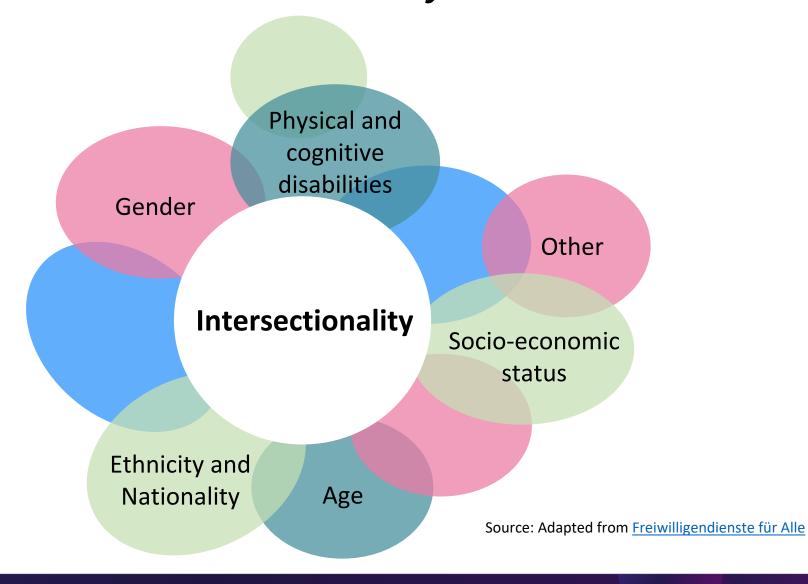
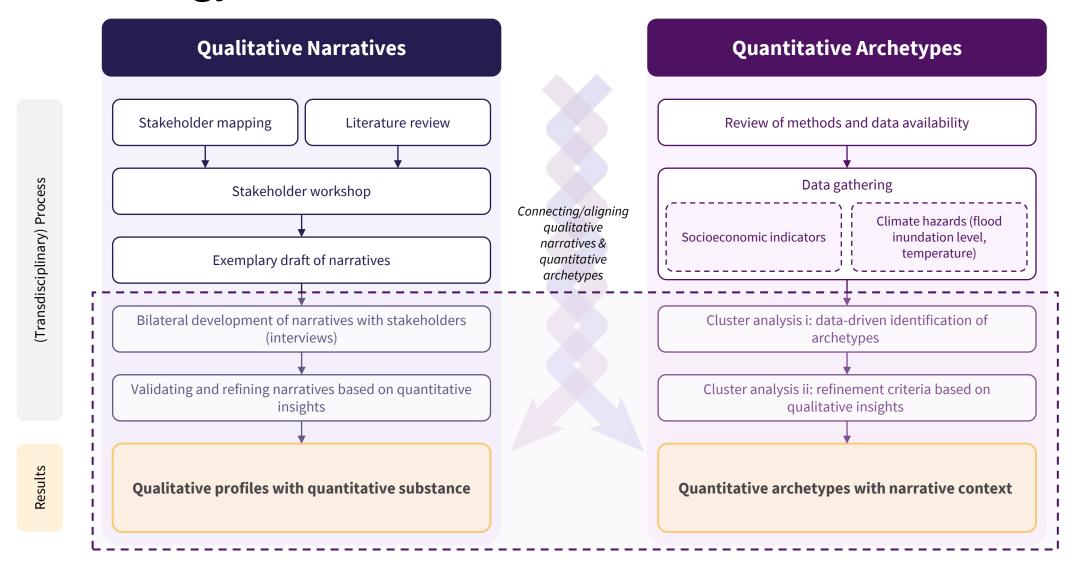


Exploring social vulnerability through narratives: A mixed-methods approach to develop storylines of vulnerability for heat and flood related risk in Austria


13th June | 2024

<u>Julia Beier</u>¹, Eva Preinfalk^{1,2}, Susanne Hanger-Kopp¹

¹IIASA, Austria; ²University of Graz, Wegener Center, Austria


Intersectional social vulnerability

Methodology

Why exploring intersectional social vulnerability through narratives?

Development of climate adaptation policies to reduce vulnerability and enhance adaptive capacity

Communication on different governance levels for awareness raising

Addition to and contextualization of quantitative vulnerability assessments

Overview of results | Qualitative

Process/Input

Conducted a workshop & interviews to identify vulnerability drivers

17 different participating organizations

Identified indicator combinations which showcase the intersectionality stakeholder mental models

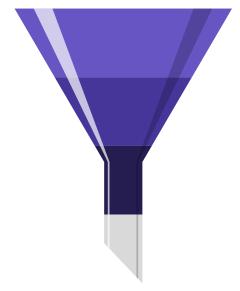
Frequent vulnerability drivers HE HE Access to green, Pre-existing health blue, and cooled Education Gender conditions indoor spaces HE HF HE H Income and Occupation and **Limited Mobility** Disability financial situation working conditions HF HE Lack of Social Single Person Network and Age (Children, > 65) **Tenancy** Household Loneliness HE HE Single Parent **Migration History Living Conditions** Language Barrier No previous No (sufficient) Lack of Access to **Risk Perception** experience with Insurance Information flooding

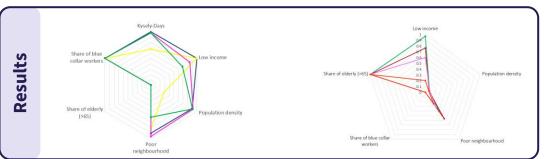
Overview of results | Quantitative

Data

Variable		Туре	Mean	Median	Share of total sample
Income (in EUR)		Continuous	30184	24690	n.a.
Age > 65		Binary	n.a.	n.a.	22%
Blue collar worker		Binary	n.a.	n.a.	20%
Sector of	Manufacturing	Binary	n.a.	n.a.	23%
employment	Outdoor: agriculture, forestry, construction Other	Binary	n.a.	n.a.	5% 72%
Population density			11.4.	11.a.	1270
(inhabitants per grid cell, population weighted)		Continuous	4142	1198	n.a.
Average annual income of 1x1km cells by inhabitant (in EUR)		Continuous	27842	27158	n.a.

Heat: Average number of Kysely days experienced annually by a person in our sample (2012-2022) (SPARTACUS)


Flood: Flood exposure data from GLOFRIS model (Ward et al. 2017)


Clustering

Multivariate statistical analysis (clustering) to identify risk profiles (clusters)

Input qualitative research: to identify key vulnerability drivers (individually and intersectionally)

Result: High-risk clusters, characterized by similar patterns within the clusters

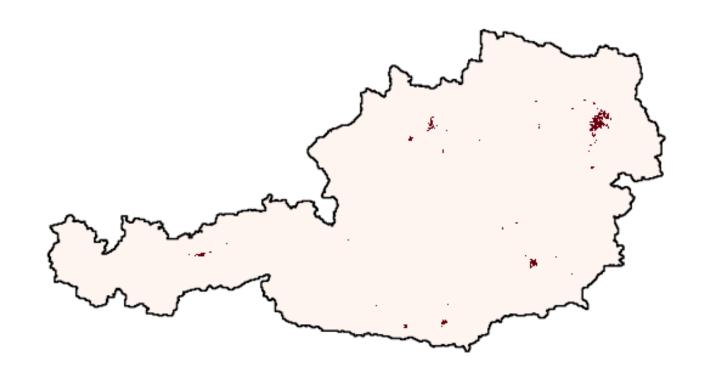
Overview of results | Narrative 1 Heat

Cluster 1: Blue collar worker (family) in urban area, poor living conditions H Access to green, blue, and cooled Education indoor spaces Occupation and Income and financial situation working conditions HE Age (Children, > 65) Tenancy **Living Conditions**

Overview of results | Narrative 1 Heat

Cluster 1: Blue collar worker (family) in urban area, poor living conditions

19 – 25 kysely days per year


Very low (€ 6.4 tsd.) to middle (€ 30 tsd.) gross annual income

210 tsd. workers of which 30 tsd. are employed in the construction sector, agriculture or forestry

Living in very densely populated areas with a low average income

Overview of results | Narrative 2 Flood

Overview of results | Narrative 2 Flood

Cluster 2: Elderly person in rural area, single person household


340 tsd. people

Of which 170 tsd. with very low (€8 tsd.) to low (€21 tsd.) income

Predominantly living in rural to suburban areas

Conclusions and next steps

Narratives reveal complexity: Exploring stakeholder experiences regarding intersectional social vulnerability revealed and captured some of the complexity of vulnerability.

Similar drivers, different effects: Vulnerability to heat and flooding is driven by similar factors, but they are context-specific

Policy development: Considering different risk profiles and multiple burdens is essential in the targeted development of adaptation measures to avoid exacerbating existing inequalities.

Next steps: Developing storylines of different profiles for vulnerable households based on the narratives and clustering results for stakeholder application

Thank you.

International Institute for Applied Systems Analysis (IIASA) Schlossplatz 1, A-2361 Laxenburg, Austria

(S) iiasa.ac.at

@IIASAVienna

iiasa.ac.at/contact

@IIASALive

f IIASA

(<u>©</u>)

@iiasavienna

(in)

iiasa-vienna

Julia Beier

beier@iiasa.ac.at

Eva Preinfalk

eva.preinfalk@uni-graz.at

Susanne Hanger-Kopp

hanger@iiasa.ac.at