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Abstract 

Long-term monitoring of the built-up area is essential for a number of applications. The analysis of growth 
trends over time allows an ex-ante assessment of policy decisions and can inform the implementation of 
policies like the monitoring of progress towards achieving the Sustainable Development Goals (SDG’s). At the 
same time, they can form the basis for future projections and public discussion of sustainable development 
paths. So far, the joint use of Landsat and Sentinel satellite sensors for long-term built-up surface monitoring 
was an unsolved task in the state-of-the-art applications of remote sensing data analytics. This study introduces 
an integrated solution for inferring changes on built-up surfaces from Sentinel-2 MSI images (at 10 m 
resolution), combined with historical Landsat scenes (at 30 m and 60 m resolution), organized into four epochs 
1975, 1990, 2000 and 2014.  The objective of this study is two-fold. First, we aim to develop a methodology 
for estimating multi-temporal global built-up surfaces and volumes that allow for controlled estimates of built-
up change in time in rural and urban areas. Secondly, we aim to deliver the multi-temporal assessment of global 
built-up surfaces and volumes with greater accuracy than in the previous Global Human Settlement Layer 
(GHSL) products. Our approach relies on stratified multiple-quantization associative rule learning applied to 
Earth Observation data, object-oriented image processing, and multiple decision support ensemble modelling. 
Initial assessment of our model show that the built-up surface change predictions of the proposed solution are 
more accurate than those reported in the previous GHSL data package (GHS-BU R2022A), as well as in other 
current multi-temporal estimates of built-up surface with worldwide coverage. 
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1 Introduction 

The Global Human Settlement Layer (GHSL) project produces global spatial information, evidence-based 
analytics, and knowledge describing the human presence on the planet. The GHSL relies on the design and 
implementation of new spatial data mining technologies that allow automatic processing, data analytics and 
knowledge extraction from large amounts of heterogeneous data including global, fine-scale satellite image 
data streams, census data, and crowd sourced or volunteered geographic information sources. Since its first 
release in 2016, the GHSL data were continuously improved in quality and coverage. 

The work presented here addresses for the first time a global fine-scale representation of the built-up surface 
changes jointly using the data collected from Landsat sensors (historical) and more recent Sentinel-2 (S2) multi-
spectral instrument data. This fundamental point of joint use of Landsat and Sentinel input sensors facilitates 
keeping an open link between the information extracted from the new Copernicus sensor data and from the 
patrimony of historical remote sensing data collected since the beginning of the Earth Observation (EO) era in 
‘70s, allowing the monitoring and the future projection of the sustainable development indicators. Such long-
term monitoring of the built-up environment is essential for a number of applications including regional and 
urban planning, sustainable development or disaster risk reduction. The analysis of growth trends over time 
allows an ex-ante assessment of policy decisions and can inform the implementation of policies like the 
monitoring of progress towards achieving the Sustainable Development Goals (SDG’s). In particular indicators 
of SDG 11 on sustainable cities and communities can be monitored directly with the GHSL data (Melchiorri et 
al. 2019; Schiavina et al. 2019). With the combined Landsat and Sentinel-2 time series and the future updates 
of the built-up and population layers through the exposure component of the Copernicus Emergency 
Management Service (Melchiorri and Kemper 2023), it will be possible to cover the full period of the 2030 
Agenda for Sustainable Development from 2015 to 2030. In addition, the data can form the basis for future 
projections and public discussion of shared socio-economic pathways used in the context of climate scenarios 
(Gao and O’Neill 2020; Gao and Pesaresi 2021). 

1.1 Question addressed 

Commonly known challenges in the construction of global fine-scale multi-temporal land cover classification 
products are related to seasonal/illumination reflectance changes that must be discriminated from thematic 
information changes.  Moreover, if “built-up surface” is the target abstraction class, and the spatial resolution 
of the available sensor is at the decametric scale approximating the average size of the target built-up 
structures, then additional challenges should be taken in to account. They are related to the fact that the 
collected remotely sensed data in a specific data sample is always generated by the reflection/emission of a 
mixture of component surfaces including different types of roof covers, neighbouring surfaces as paved 
surfaces or vegetation grass/ trees, plus a strong shadow component cast by the buildings that is variable 
depending on the illumination angle and on the building height. The JRC GHSL was pioneering the technical 
possibility of a global fine-scale mapping of built-up areas  (M. Pesaresi, Ehrlich, et al. 2016), (Corbane et al. 
2019), followed by other research efforts leveraging on the Google Earth Engine (GEE) processing platform and 
concentrating on using Landsat data input (Gong et al. 2020; Huang et al. 2021; 2022; Liu et al. 2020; 
Marconcini et al. 2021; Zhang et al. 2022). 

The image data managed by the GEE has a high level of pre-processing cost (data cube), and high density of 
image data records, including all the 10 million of Landsat scenes collected by the Landsat satellite platform. 
On the contrary, the image data supporting the GHSL is low-cost, scarce and reduced, being the supporting 
Landsat data constituted by only 35 000 single Landsat scenes collected in arbitrary points in time (sparse set, 
supplemented with Global Land Survey1 data), not organized as data cube, and being the supporting Sentinel-
2 (S2) image data a radiometric composite of original imagery, reducing the quantity of radiometric information 
and injecting noise derived from not exact spatial alignment between the individual images.   

The scarce and reduced characteristic of the image data supporting the GHSL demonstrates the robustness, the 
computational efficiency, and effectiveness of the inferential engine developed by the JRC (M. Pesaresi, 
Corbane, et al. 2016; M. Pesaresi, Syrris, and Julea 2016), in much more hostile data environment, as compared 
to the mainstream machine learning methods made available in the GEE environment. The above facts are 

                                                        

 

1 https://www.usgs.gov/landsat-missions/global-land-survey-gls: GLS1975, GLS1990, GLS2000 

https://www.usgs.gov/landsat-missions/global-land-survey-gls
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framed in the overall perspective of democratization of the information production process from public remotely 
sensed data and reduction of the cost and of the environmental impact (energy consumption) of the processing 
infrastructure as it was set at the origin of the GHSL concept definition.  

1.2 Objectives of the research/study 

The first global production of decametric-scale BU surface multi-temporal information (from multi-sensor 
image data) was proposed by (M. Pesaresi, Ehrlich, et al. 2016), followed by subsequent GHSL data package 
releases (European Commission. Joint Research Centre. 2022; 2023; Florczyk et al. 2019). The GHS-BU R2022A 
data release was the first attempt for multi-platform multi-temporal built-up surface and volume estimation. 
It introduced several innovative product components, as compared to the previous release R2019:  

• new observed epoch 2018 vs. 2014 
• new 10 m-res vs. 30 m-res assessment of the built-up surfaces 
• new sub-pixel built-up surface fraction prediction vs. Boolean class prediction  
• new differentiation of residential (RES) and non-residential (NRES) built-up classes 
• new 100 m-res built-up volume vs. just 250 m-res built-up surface  
• new multi-temporal assessment 
• multiple-sensor: Landsat MSS, TM, and Sentinel-2 
• equal-time-interval grids vs. arbitrary time interval 
• extrapolation to the 2025 and 2030 time points 

These innovative product components were obtained by a substantial investment in research and 
methodological development of the JRC in the precedent years that can be summarized in the following points: 

• new associative rule learning on quantized EO data based on multiple quantization minimal support 
schema generalization of the symbolic machine learning (SML) approach (M. Pesaresi, Syrris, and Julea 
2016), supporting the S2 sub-pixel built-up fraction estimation; S2 RES/NRES class differentiation, and 
Landsat image classification  

• new low-level textural classification based on multi-scale generalization of PANTEX (M. Pesaresi, 
Gerhardinger, and Kayitakire 2008), supporting the RES/NRES classification, and the hyper-dense built-
up cores identification 

• new low-level segmentation based on the watershed of the inverse of the saliency on multi-scale 
image morphological decomposition by geodesic connected components (Characteristic-Saliency-
Leveling frame) (Martino Pesaresi, Ouzounis, and Gueguen 2012), supporting the object-based 
RES/NRES classification  

• new multiple-scene SML-extracted semantic Φ composite based on divergent cumulative mechanism 
of logically complementary hypothesis (built-up vs. non built-up) , improving the robustness of the 
multi-temporal classification of historical Landsat imagery 

• new built-up volumetric estimation based on the integration of Digital Elevation Models (DEMs) and S2 
derived features, supporting the built-up height (ANBH, AGBH) and volume (VOL) prediction (European 
Commission. Joint Research Centre. 2023)  

• new spatial-temporal evolution prediction schema based on rank-optimization of the composite of 
data-driven empirical land suitability (ELS) and data-driven built-up expansion-inertial dynamical fields 
(BUDYN) 

Despite the high accuracy of GHSL R2022A in single epochs, a positive bias was observed in predicted change 
rates of built-up surfaces and built-up volumes after the year 2000, especially in rural areas (domain as set by 
the GHS-SMOD R2022A).  

The observed bias stems for the need for both maximal accuracy of the built-up grids and the built-up change 
rates measured on admin spatial units, required for reliable estimation of policy indicators (SDG11 for example). 
However, the inner trade-offs between predicting 100 m built-up surface grids predicted at the different epochs, 
and in predicting the aggregated (by administrative units) built-up change rates, may conflict – due to prediction 
bias components at different scales. For example, at the given data conditions, the maximization of the change 
grid accuracy led to extremely conservative aggregated change rates, thus driving the system toward 
unrealistically static change rates unsuitable for supporting monitoring of the policy indicators. This implies that 
of a satisfactory solution should be determined by observation of more than single performance measure in 
the ensemble of model choices. The observed limitation in the prediction of change rates in GHSL R2022A, 
coupled with the unprecedented availability of the new multi-temporal building footprints (MTBF) reference 
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data, was the driving force behind research into improving the prediction in built-up surface change, finalized 
into the new data release (European Commission. Joint Research Centre. 2023). The main objectives of the 
study are summarized below: 

1. Assess the performances of the prediction of built-up surface change as provided by the available prior 
knowledge, further referred to as the “priors” (Corbane et al. 2019; Gong et al. 2020; Huang et al. 2021; 
2022; Liu et al. 2020; Marconcini et al. 2021; M. Pesaresi, Ehrlich, et al. 2016; Zhang et al. 2022), and 
in comparison with the previous R2022A GHSL data release. 

2. Experiment the possibility to improve the capacity to discriminate built-up/non built-up semantic 
abstraction from historical Landsat satellite data by changing the train sampling mechanism, by 
stratification of the problem solving in different domains potentially exposed to specific information 
retrieval biases, by changing the mechanism of downscaling the predicted historical Landsat Ф to the 
new S2 geometry, and by changing the mechanism of phi maximization across the different Landsat 
satellite scenes belonging to the same epoch or different epochs. 

3. Experiment the possibility to compose the multiple-time multiple-strata multiple-model change 
predictions in to an ensemble prediction and measure the performances as compared to the previously 
available options in the URBAN vs. RURAL application domains, as set by the GHS-SMOD R2022A (and 
referred to as URBAN and RURAL henceforth). In the frame of this objective, two sub-experiment were 
performed a) a binary (BIN) change detection schema and b) a continuous (CON) change detection 
schema. 

4. Experiment the possibility to select an independent ensemble model for given change epoch with a 
Pareto multi-objective optimization, combining the distance between the predicted and the observed 
change grids, the change rate error in the urban application domain and the change rate error in the 
RURAL application domain. 

5. Answer to the pragmatic question if the R2022A observed built-up change bias could be reduced by 
improvements of the processing methods, and if yes by using which data support for the automatic 
decision: a) any of the priors already available, b) a composite of the priors, c) the scarce Landsat data 
supporting in the GHSL infrastructure, or d) the scarce Landsat data supporting in the GHSL 
infrastructure augmented by the priors. 

1.3 Novelty 

The study on multi-temporal estimation of built-up surfaces described in this report, resulting in the production 
of data release R2023A, improves the prediction of the spatial-temporal patterns of change in the built-up 
surfaces, by extending the processing workflow with the following main packages: 

• extension of the reference database with new multi-temporal building footprint (MTBF) reference data 
• semantic and spatial harmonization, quality control, filtering, identification of spatial-temporal data 

valid conditions in the MTBF 
• new design, development, and validation of the methods supporting the Ф semantic extraction from 

Landsat image data (neighbouring spatial equalized sampling, stratified learning, temporal interlaced 
maximization) 

• new design, development, and validation of the methods supporting the composite of the multiple-
sensor, multiple-time, multiple-model, multiple-decision support, multiple-strata predictions to the 
final ensemble model prediction 

• introduction of the existing multi-temporal estimates of the built-up surface (priors) to the workflow, 
new empirical test of the priors, combination of priors, and Ф semantic extraction from Landsat data 
models 

• multiple decision support ensemble approach for model evaluation and selection.  
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2 Data 

2.1 Earth Observation data  

The remotely sensed image data supporting this GHSL release are collected by the Landsat and the Sentinel 
platforms, organized in five epochs: 1975, 1990, 2000, 2014, and 2018. 

Landsat Imagery  

The Landsat image data used in input include 35 479 individual scenes organized in four epochs 1975, 1990, 
2000, and 2014. The image data resume the whole history of civilian Remote Sensing, including all Landsat 
missions from L1 to L8, and four different sensors: MSS, TM, ETM, and OLI, with substantially different technical 
specifications2. The epochs 1975, 1990, 2000, and 2014 are dominated by image data collected by the MSS, 
TM and ETM sensors, respectively. The average absolute time tolerance of the image data collection time vs. 
the nominal time barycentre of the epoch is 2.4, 2.7, 1.8, and 0.9 years for the 1975, 1990, 2000, and 2014 
epochs, respectively. The aggregated time precision of all the data in the four epochs is of 2 years. The empirical 
time barycentre for the epochs 1975, 1990, 2000, and 2014 is the year 1975.1, 1989.4, 2000.8, and 2009.7, 
respectively (Table 1). 

Table 1 – Summary of the Landsat image data 

Epoch Sensor Mission Count of scenes  Average year of scenes Standard deviation of year of scenes 

1975 MSS 

- 7 355 1975.1 2.4 

L1 3 495 1973.1 1.0 

L2 3 099 1976.5 1.6 

L3 750 1978.8 0.8 

L4 11 1982.0 0.0 

1990 

- - 8 011 1989.4 2.7 

MSS 

- 242 1983.9 1.1 

L3 3 1983.0 0.0 

L4 132 1983.1 0.3 

L5 107 1985.0 0.8 

TM 

- 7 769 1989.6 2.6 

L4 1 312 1989.0 1.3 

L5 6 457 1989.7 2.7 

2000 

- - 9 774 2000.8 1.8 

ETM L7 9 276 2000.6 1.4 

TM L5 498 2004.1 3.8 

2014 

- - 925 2009.7 0.9 

ETM L7 259 2009.5 0.5 

OLI L8 28 2013.5 0.5 

TM L5 638 2009.6 0.6 

Total - - 26 065   

Sentinel-2 imagery 

The epoch 2018 is made by the GHS_composite_S2_L1C_2017-2018_GLOBE_R2020A (3) that corresponds to 
global cloud-free pixel based composite created from the Sentinel-2 data archive (Level L1C) available in Google 
Earth Engine (4) for the period January 2017 - December 2018. 

                                                        

 

2  For more details see: https://www.usgs.gov/landsat-missions/landsat-satellite-missions 
 
3  https://ghsl.jrc.ec.europa.eu/download.php?ds=compositeS2 
4  https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2 

https://www.usgs.gov/landsat-missions/landsat-satellite-missions
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2.2 Priors 

In January 2008 Barbara Ryan, the Associate Director for Geography at the U.S. Geological Survey, and Michael 
Freilich, NASA’s Director of the Earth Science Division, signed off a Landsat Data Distribution Policy that made 
Landsat images free to the public5. The USGS announced the free-and-open data policy on April 21, 2008.  Since 
the pioneering work of the JRC GHSL (M. Pesaresi and Ehrlich 2009)  (M. Pesaresi et al. 2013) (M.Pesaresi 2014) 
some global, fine-scale and multi-temporal assessment of the built-up surface have been produced using the 
public Landsat image data. They are listed in chronological order below:  

GHS_B_P2016 : “Operating procedure for the production of the Global Human Settlement Layer from Landsat 
data of the epochs 1975, 1990, 2000, and 2014” (M. Pesaresi, Ehrlich, et al. 2016) 

GHS_B_P2019 : “Automated global delineation of human settlements from 40 years of Landsat satellite data 
archives” (Corbane et al. 2019) 

GAIA : “Annual maps of global artificial impervious area (GAIA) between 1985 and 2018” (Gong et al. 2020) 

GAUD : “High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015” (Liu et al. 2020) 

GISA : “30 m global impervious surface area dynamics and urban expansion pattern observed by Landsat 
satellites: From 1972 to 2019”  (Huang et al. 2021) 

WSF_EVO : “World Settlement Footprint Evolution 1985-2015” (Marconcini et al. 2021) 

GISA2 : “Toward accurate mapping of 30-m time-series global impervious surface area (GISA2.0)” (Huang et 
al. 2022) 

GISD30  : “Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat 
imagery on the Google Earth Engine platform” (Zhang et al. 2022, 30) 

Those satellite-data-derived land cover classifications describe the temporal evolution of class abstraction 
semantics that are not necessarily consistent (6) with data classification methodologies that are very different:  
nevertheless, they may be considered in principle as largely overlapping and all highly correlated with the 
semantic notion of “built-up surface” as expressed in the new GHSL data (European Commission. Joint Research 
Centre. 2022).  Moreover, all the non-GHSL sources have been produced in 2020-2022 with the support of the 
whole Landsat archive (~10 million of scenes), in contrast with the poverty of the GHSL historical image data 
support relying only on a limited archive of ~35 000 Landsat scenes. Therefore, those global multi-temporal 
land cover products represent prior knowledge that may be potentially valuable in support to various processing 
tasks of the new GHSL MT data. They include: training set sampling, adaptive learning, data fusion and data 
gap filling.   

2.3 Multi-temporal building footprints (MTBF)  

The multi-temporal building footprints (MTBF) were collected from three main sources: the Geographic 
Information System of the Commission (GISCO) portal, JRC autonomous search in the city administration open 
data, and the MTBF33 project (Uhl and Leyk 2022). MTBF data are vector datasets of building footprints with 
date of construction assigned. The original sources have been subdivided by small administrative units (NUT3 
in Europe, County in US) in order to increase the number of test cases and to be able to test the variability of 
the average performance metrics. Figure 1 shows the distribution of available MTBF data tested in the study. 

                                                        

 

5  https://www.usgs.gov/media/files/imagery-everyone-timeline-open-landsat-archive 
6  They include “built-up areas” GHS, “artificial impervious surfaces” GAIA, “impervious surface area“ GISA & GISA2, “urban area” GAUD, 

and “settlement footprint” WSF_EVO. 
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Figure 1 – Test data tiles supporting the study. Black: data tiles where MTBF data is available, Red circle: out-of-the-sample 
data tiles in worst case scenarios processed for visual inspection. 

Due to the uncertainties related to their actuality (up-to-datedness) and completeness, the collected MTBF were 
not suitable for testing all the epochs considered. For each epoch, we included in testing the MTBF samples 
(100 m x 100 m grids) that were passing the suitability criteria: 

• Minimum construction year greater or equal 1000 – to eliminate samples with implausible construction 
dates; 

• Maximum construction year lesser or equal 2022 – to eliminate samples with implausible construction 
dates, greater than the date of the MTBF production; 

• 99.5 percentile of construction years greater or equal the considered epoch – to ensure the observation 
of change in the number of buildings in the considered epoch. 

• Exclusion of samples including building footprint data with no attribute of the epoch of construction 
(NODATA exclusion)  

Table 2 shows the number of MTBF test cases by source and by Country, classified regarding the suitability to 
support the assessment of specific epochs. As can be noticed, the availability of test cases is maximal in the 
epochs 1975, 1990, and 2000, decreases in the epoch 2014, and is minimal in the 2018 epoch. Analogue 
observation can be done on the number of valid data test samples at 100 m-res in the different epochs (Table 
3). The whole MTBF data passing the suitability criteria is representative of all the settlement classes as defined 
in the degree of urbanization level 2 and stratified using GHS settlement layers GHS-SMOD R2022A (SMOD L2) 
(Table 4).  

Table 2 – Number of MTBF test cases by source and by Country, classified regarding the suitability to support the assessment 
of specific epochs, depending on the conditions of update and completeness of the MTBF data. 

Source Country 
N of MTBF test 

cases 1975 

N of MTBF test 

cases 1990 

N of MTBF test 

cases 2000 

N of MTBF test 

cases 2014 

N of MTBF test 

cases 2018 

GISCO FRANCE 677 677 677 677 661 

 SPAIN 96 96 96 87 9 

JRC Netherlands 225 206 192 192 95 

 Switzerland 8 8 8 8 8 

 USA 74 74 74 49 4 

MTBF33 USA 203 203 203 7 0 

Total  1283 1264 1250 1020 777 
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Table 3 – Number of 100m-res samples supported by the MTBF test cases by source and by Country, in test cases classified 
regarding the suitability to support the assessment of specific epochs, depending on the conditions of update and 
completeness of the MTBF data. 

Source Country ≤1975 ≤1990 ≤2000 ≤2014 ≤2018 ≤2020 Total 

GISCO FRANCE     10 3876 6 895 379 6 999 255 

 SPAIN   4 904 220 828 500 805 18 482 745 019 

JRC Netherlands 86 438 52 854   506 984 538 720 1 184 996 

 Switzerland      48 408 48 408 

 USA   342 824  441 678 8 141 792 643 

MTBF33 USA   1 948 617 112 821   2 061 438 

Total  86 438 52 854 2 296 345 333 649 1 553 343 7 509 130 11 831 759 

 

Table 4 – Total number of 100m-res valid samples supported by the MTBF data, by SMOD L2 application domain strata 

Source Country 

Mostly 

uninhabited 

area (11) 

Dispersed 

rural area 

(12) 

Village 

(13) 

Suburbs or 

peri-urban 

area (21) 

Semi-

dense 

town (22) 

Dense 

towns 

(23) 

City (30) Total 

GISCO FRANCE 1 043 128 1 547 495 254 748 341 388 131 136 55 534 125 989 3 499 418 

 SPAIN 79 814 136 380 21 167 67 428 23 459 12 237 31 988 372 473 

JRC Netherlands 19 228 183 947 41 394 145 394 44 273 51 831 104 717 590 784 

 Switzerland 689 4 809 864 8 039 108 2 262 7 433 24 204 

 USA 34 369 105 884 5 950 155 930 6 642 19 124 68 167 396 066 

MTBF33 USA 98 595 300 094 20 458 175 000 40 133 37 674 158 450 1 030 404 

Total  1 275 823 2 278 609 344 581 1 093 179 245 751 178 662 496 744 5 913 349 

As expected, the number of samples supporting the epoch 2018, and consequently the change maps 2018 vs. 
all the other epochs (2014, 2000, 1990, and 1975) are much smaller than the total number of samples, but 
still representing all the settlement patters in the L2 SMOD strata, degree of urbanization level 2 (Table 5). As 
a result, MTBF samples selected for the model development cover mostly the area of France, partially Spain, 
Netherlands, Switzerland, and an individual county from US (Figure 2). The selected samples cover mostly rural 
areas, with many samples of the urban centres excluded, as no significant change was observed there since 
1975.   

Table 5 – Total number of 100m-res valid samples supported by the MTBF data and suitable for the assessment of the 
epoch 2018, by SMOD L2 application domain strata 

Source Country 

Mostly 

uninhabited 

area (11) 

Dispersed 

rural area 

(12) 

Village 

(13) 

Suburbs or 

peri-urban 

area (21) 

Semi-

dense 

town (22) 

Dense 

towns 

(23) 

City (30) Total 

GISCO FRANCE 1 018 067 1 527 797 251 766 339 790 130 219 54 825 125 016 3 447 480 

 SPAIN 1 382 4 040 2 204 245 535 173 652 9 231 

JRC Netherlands 8 641 97 613 18 813 68 811 24 929 21 759 28 794 269 360 

 Switzerland 689 4 809 864 8 039 108 2 262 7 433 24 204 

 USA  244  2 873  953  4 070 

Total  1 028 779 1 634 503 273 647 419 758 155 791 79 972 161 895 3 754 345 
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1:7 000 000 

Zurich, CH 

Corse, FR 

Madrid, ES Mallorca, ES Fuerteventura, ES  Netherlands Atlanta, US 

1:100 000 

Figure 2 – Valid 100 m x 100 m MTBF samples, suitable for the assessment of the epoch 2018 and the change maps 2018 
vs all the other epochs (2014, 2000, 1990, and 1975). The colour background represents SMOD classification. Noteworthy, 
samples selected do not cover cores of urban centre SMOD class 
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3 Methods 

3.1 Problem setting 

Jointly using the data collected from Landsat sensors and more recent S2 multi-spectral instrument data is 
subject to issues arising from their different technical capabilities, such as completeness, accuracy and 
resolution. As a result, the unsupervised change detection techniques, used in the earlier GHS multi-temporal 
estimations, are particularly challenging for scattered built-up patches, where the empirical probability to be 
associated to the NBU semantic background is systematically higher than the probability to be associated to 
the BU semantic foreground. This systematic empirical bias is a consequence of the limited spatial/spectral 
resolution capacity of the historical sensors supporting the MT assessment, as compared to the resolution 
necessary for supporting the discovery of the built-up surfaces in the year 2018. As noticed in testing which 
was observed for R2022A product, the unsupervised change detection technique is exposed to the risk of 
producing unrealistic high change rate of built-up surfaces, especially in rural areas connoted by scattered 
settlement patterns.   

Increased access to MTBF data has allowed to re-set the problem in a supervised change detection schema 
allowing to minimize the errors induced by systematic bias and gain of historical Landsat EO data as compared 
to the new S2 image data injected in the system.  Moreover, the increased amount of MTBF allowed for inferring 
systematic relations between remote sensing data and semantic information in multiple observation contexts 
or information STRATA. Thus, the new model is based on the composite of stratified minimization of the 
empirical risk, keeping the inferential engine working by associative rule learning applied to the combination 
(sequence) of quantized remotely sensed data, but generalizing the previous approach from the single-model-
solution to the ensemble-model-solution, potentially allowing to increase both accuracy and robustness of the 
change detection.   

3.2 General overview of the new solution 

We build the time-series of the built-up surface and volume information in equal time (5-year) intervals from 
1975 to 2030. Spatial-temporal interpolation was applied in order to transform the predictions of the amount 
of BU surface in the global spatial grids corresponding to arbitrary epochs in the time domain [1975, 1990, 
2000, 2014, 2018] in equal-time interval 1975:5:2030. Equal-time interval information grids are supposed to 
facilitate the use of the GHSL data as input of causal models or future predictive models using explicit temporal 
variables.  

 Master workflow 

The general logic followed for the production of the multi-temporal GHSL data is the following: 

a) Extract high-level semantic from the best image data available for the study:  Sentinel2 image 
composite, 10m-res year 2018 

o Sub-pixel built-up surface fraction TOTAL (sum in the 100m sample):  𝑓𝑥𝐵𝑈𝑇𝑂𝑇
𝑆  

o Non-residential (NRES) land use classification (surface share in the 100m sample) :  𝑓𝑥𝑁𝑅𝐸𝑆 

o Average of the net building height (ANBH) prediction (100m sample): 𝑓𝑥𝐴𝑁𝐵𝐻 

b) Extract logical derivative of the BU high-level semantic  

o Non-residential built-up surface : 𝑓𝑥𝐵𝑈𝑁𝑅𝐸𝑆
𝑆 =  𝑓𝑥𝐵𝑈𝑇𝑂𝑇

𝑆  ∙  𝑓𝑥𝑁𝑅𝐸𝑆 

o Residential built-up surface: 𝑓𝑥𝐵𝑈𝑅𝐸𝑆
𝑆 =  𝑓𝑥𝐵𝑈𝑇𝑂𝑇

𝑆  ∙  (1 −  𝑓𝑥𝑁𝑅𝐸𝑆) 

o Total built-up volume: 𝑓𝑥𝐵𝑈𝑇𝑂𝑇
𝑉 =  𝑓𝑥𝐵𝑈𝑇𝑂𝑇

𝑆  ∙  𝑓𝑥𝐴𝑁𝐵𝐻  

o Residential built-up volume: 𝑓𝑥𝐵𝑈𝑅𝐸𝑆
𝑉 =  𝑓𝑥𝐵𝑈𝑅𝐸𝑆

𝑆  ∙  𝑓𝑥𝐴𝑁𝐵𝐻 

o Non-residential built-up volume: 𝑓𝑥𝐵𝑈𝑁𝑅𝐸𝑆
𝑉 =  𝑓𝑥𝐵𝑈𝑁𝑅𝐸𝑆

𝑆  ∙  𝑓𝑥𝐴𝑁𝐵𝐻  

c) Extract the BU surface persistence factor (100m sample) in the arbitrary points in time (GHSL epochs) 
where historical image data was available : 𝛽𝑡∈[1975,1990,2000,2014] 
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d) Project the BU high-level semantic in the past epochs, under the assumption BU high-level semantic 
varying proportionally the change of the supporting BU surface, thus: 

o 𝑓𝑥𝐵𝑈𝑅𝐸𝑆 𝑡∈[1975,1990,2000,2014]
𝑆 =  𝛽𝑡∈[1975,1990,2000,2014]  ∙   𝑓𝑥𝐵𝑈𝑅𝐸𝑆 𝑡=2018

𝑆  

o 𝑓𝑥𝐵𝑈𝑁𝑅𝐸𝑆 𝑡∈[1975,1990,2000,2014]
𝑆 =  𝛽𝑡∈[1975,1990,2000,2014]  ∙   𝑓𝑥𝐵𝑈𝑁𝑅𝐸𝑆 𝑡=2018

𝑆  

o 𝑓𝑥𝐵𝑈𝑅𝐸𝑆 𝑡∈[1975,1990,2000,2014]
𝑉 =  𝛽𝑡∈[1975,1990,2000,2014]  ∙   𝑓𝑥𝐵𝑈𝑅𝐸𝑆 𝑡=2018

𝑉  

o 𝑓𝑥𝐵𝑈𝑁𝑅𝐸𝑆 𝑡∈[1975,1990,2000,2014]
𝑉 =  𝛽𝑡∈[1975,1990,2000,2014]  ∙   𝑓𝑥𝐵𝑈𝑁𝑅𝐸𝑆 𝑡=2018

𝑉  

e) Build equal-time interval BU high-level semantics in the 1975:5:2030 range by spatial-temporal 
interpolation and extrapolation of the corresponding predictions in the 1975, 1990, 2000, 2014 points 
in time. 

The general logic of the proposed solution is summarized at Figure 3: assumed solved the prediction of built-
up surface in the year 2018 from S2 image composite by other independent model predicting the continuous 
built-surface function in the spatial grid x 𝑓𝑥𝐵𝑈𝑡=2018, the historical Landsat imagery is used to predict the 
persistence factor 𝛽𝑡 (inverse of change) to be applied to the function 𝑓𝑥𝐵𝑈𝑡=2018 in order to predict the other 
observed epochs 2014, 2000, 1990, and 1975.  

𝑓𝑥𝐵𝑈𝑡∈[1975,1990,2000,2014] =  𝛽𝑡∈[1975,1990,2000,2014] ∗  𝑓𝑥𝐵𝑈𝑡=2018 

Equation 1 - persistence factor 𝛽𝑡 : basic mechanism to predict change 

𝛽𝑡  = 1 means that 𝑓𝑥𝐵𝑈𝑡 =  𝑓𝑥𝐵𝑈𝑡=2018 at the specific spatial sample x and point in time t, while  𝛽𝑡  = 0 
means that 𝑓𝑥𝐵𝑈𝑡 = 0 at the specific spatial sample x and point in time t.  

In order to mitigate issues related to different image sensor resolution and raster grid misalignment in the input 
data, the factor 𝛽𝑡 is estimated in a multi-step approach involving image segmentation at 10m-res, and 
subsequent aggregation to the final 100m-grid. 

 

Figure 3 – General Logic of the proposed solution  
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 Extracting semantic Ф from Landsat data 

The semantic Ф is the measure of the association between a combination of quantized EO data collected in 
different wavelengths (called a “data sequence”) and a given semantic, e.g the BU, the NBU classes. In the 
approach discussed here, the semantic Ф is extracted from EO data using symbolic machine learning or SML 
(M. Pesaresi, Syrris, and Julea 2016). In particular, a generalization of the SML to the multiple-quantization (MQ) 

is adopted.  In the MQ SML a hierarchical pyramid of inferences is done by iterative application of single 
quantization SML in a given list of quantization parameters, solved by increasing order. Thus, the hierarchical 
inferential pyramid is scanned from the bottom to the top (from small to large quantization parameters), and 
the first SML inference with a minimal empirical support is selected. In this approach, two basic hyper-
parameters are governing the function of the classifier a) the vector of quantization parameters 𝑄𝑙  and b) the 
minimal support MinSupp. In the application discussed here the two hyper-parameters of the MQ SML were set 
as  

𝑄𝑙 =  2[0..6] =  [1 , 2, 4, 8, 16, 32, 64] 

𝑀𝑖𝑛𝑆𝑢𝑝𝑝 = 10 

They are considered as constant across the whole volume of image data processed (all sensors, all epochs), 
and assuming the quantized digital number (DN) at the sample x of the EO data at the level l of the quantization 
pyramid calculated as  

𝐷𝑁𝑥
𝑙∈1..7 =  𝑟𝑜𝑢𝑛𝑑(𝐷𝑁𝑥 𝑄𝑙∈1..7⁄ ) 

In the application discussed here, the direct digital numbers as collected by the EO sensors are used in input 
and quantized for the SML encoder, without the necessity to apply external models and assumptions for 
atmospheric radiance transfer and reflectance calibration. This is possible because continuous machine learning 
is done through low-computational cost SML processing, thus no model transfer is needed from one satellite 
scene to another.  

Different EO sensors were adopted in the various Landsat missions operational from 1975 to 2020. They can 
be grouped in four main cases: the Multi Spectral Scanner (MSS), the Thematic Mapper (TM), the Enhanced 
Thematic Mapper (ETM), and the most recent Operational Land Imager (OLI).  

Table 6- Table 9 shows their main technical characteristics and which spectral bands were used in input of the 
SML for producing the inference of the semantic Ф. As general rule, the maximum amount of spectral data 
available from the specific sensor was used, with the only exception of the thermal infrared (TIR) and the 
panchromatic (Pan) data. In particular, Blue, Green, Red, and near infra-red (NIR) bands are always used in input 
because available since the first MSS sensor. TM, ETM sensors introduced the short-wave infrared (SWIR) bands 
that were included in the SML input data encoder as well. Finally, OLI sensors added the new coastal aerosol 
and the cirrus bands that were included in the SML input data encoder as well.   

Accordingly, the SML input data encoder was built around 4-elements quantized data sequences for the MSS 
data, 6-elements quantized data sequences for the TM and ETM data, and 8-elements quantized data 

sequences for the OLI data, with a constant 𝑄𝑙 =  2[0..6] , 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 = 10 hyper-parameter set. The whole 

Landsat data by sensor and epoch are listed in Error! Reference source not found.. 

 

Multi Spectral Scanner (MSS) 

Band # 

(L1-L2) 

Band # 

(L3) 

Band # 

(L4-L5) 

wavelength 

µm 
Resolution* L4/L5 TM Band Equivalent  SML input 

4 4 1 0.5-0.6 68 m X 83 m ~ 2 (0.52–0.60 µm) Blue yes 

5 5 2 0.6-0.7 68 m X 83 m ~ 3 (0.63–0.69 µm) Green yes 

6 6 3 0.7-0.8 68 m X 83 m ~ 4 (0.76–0.90 µm) Red yes 

7 7 4 0.8-1.1 68 m X 83 m ~ 4 (0.76–0.90 µm) NIR yes 

N/A 8 N/A 10.4-12.6 68 m X 83 m ~ 6 (10.41-12.5 µm) TIR no 

Table 6 – Spectral bands of the MSS sensor used in input of the SML inference. Source: 
https://landsat.gsfc.nasa.gov/multispectral-scanner/ 

https://landsat.gsfc.nasa.gov/multispectral-scanner/
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Thematic Mapper (TM) 

Band # wavelength µm Resolution*  SML input 

1 0.45-0.52 30 m Blue yes 

2 0.52-0.60 30 m Green yes 

3 0.63-0.69 30 m Red yes 

4 0.76-0.90 30 m NIR yes 

5 1.55-1.75 30 m SWIR-1 yes 

6 10.41-12.5 120 m TIR-1 no 

7 2.08-2.35 30 m SWIR-2 yes 

Table 7 – Spectral bands of the TM sensor used in input of the SML inference. Source: https://landsat.gsfc.nasa.gov/thematic-
mapper/ 

 

Enhanced Thematic Mapper (ETM) 

Band # (L1-L2) wavelength µm Resolution*  SML input 

1 0.45-0.515 30m Blue yes 

2 0.525-0.605 30m Green yes 

3 0.63-0.69 30m Red yes 

4 0.775-0.90 30m NIR yes 

5 1.55-1.75 30m SWIR-1 yes 

6 10.4-12.5 60m TIR-1 no 

7 2.08-2.35 30m SWIR-2 yes 

8 0.52-0.9 15m Pan no 

Table 8 – Spectral bands of the ETM sensor used in input of the SML inference. Source: https://landsat.gsfc.nasa.gov/etm-
plus/ 

 

Operational Land Imager (OLI) 

Band # wavelength µm Resolution*  SML input 

1 0.433–0.453 30 m coastal aerosol yes 

2 0.450–0.515 30 m blue yes 

3 0.525–0.600 30 m green yes 

4 0.630–0.680 30 m red yes 

5 0.845–0.885 30 m NIR yes 

6 1.560–1.660 30 m SWIR-1 yes 

7 2.100–2.300 30 m SWIR-2 yes 

8 0.500–0.680 15 m PAN no 

9 1.360–1.390 30 m cirrus yes 

10 10.6-11.2 100 m TIR-1 no 

11 11.5-12.5 100 m TIR-2 no 

Table 9 – Spectral bands of the OLI sensor used in input of the SML inference. https://landsat.gsfc.nasa.gov/satellites/landsat-
8/spacecraft-instruments/operational-land-imager/ 

 

 Predicting semantic changes from satellite data 

Conceptual design of the new solution comprises of the three main steps: 1/ extraction of semantic Φ  from 
Landsat imagery, 2/ composition of the decision on the image segment level and 3/ aggregation of the 
prediction to the raster grid and evaluation (Figure 4). Sematic Φ  associated to built-up (BU) and non-built-up 
(NBU) abstraction classes Φ𝐵𝑈   Φ𝑁𝐵𝑈  is extracted from Landsat imagery organized in four epochs (1975, 1990, 
2000, and 2014). This Φ is encoded as raster data respecting the arbitrary geometry (resolution, origin of the 
grid, projection) of each specific input image. This fact ensures the minimal degradation of the original satellite 

https://landsat.gsfc.nasa.gov/thematic-mapper/
https://landsat.gsfc.nasa.gov/thematic-mapper/
https://landsat.gsfc.nasa.gov/etm-plus/
https://landsat.gsfc.nasa.gov/etm-plus/
https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/operational-land-imager/
https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/operational-land-imager/
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image data, thus the maintenance of the maximum possible signal-to-noise ratio in the subsequent automatic 
image information retrieval tasks. Successively, the Φ𝐵𝑈   Φ𝑁𝐵𝑈  is downscaled to data segments (Figure 13) 
derived from the built-up fraction predicted from the S2 image composite of 2018, at 10 m resolution, 
Mollweide (MWD) projection that is adopted in the final GHSL products. The downscale from pixel of arbitrary 
origin and different size to 10m-res image segments is done by the surface-weighted average operator. The 
Φ𝐵𝑈 and  Φ𝑁𝐵𝑈   are estimated for each satellite scene collected at a specific point in time at the level of the 
data segments. Subsequently, the Φ𝐵𝑈 and  Φ𝑁𝐵𝑈  are composed by epoch and by spatially overlapping scenes, 
using different optimization approaches with the objective of minimizing the effect of image changes induced 
by seasonal changes and/or non-stationary noise in the input image data. The temporal composite-by-

optimization of the Φ𝐵𝑈 and  Φ𝑁𝐵𝑈   hypothesis at the temporal point t is noted as ⊛ Φ𝑡 . Non-stationary noise 

include cloud obstructions or cloud shadows, other biasing atmospheric conditions or data gaps in the input 

images (e.g. stripes in the old MSS image data) that are automatically excluded from the ⊛ Φ𝑡 . inference 

without the need of a dedicated masking module as is common practice in multiple-scene classification tasks. 

The ⊛ Φ𝑡 . by epoch summarized by image segment is used as predictor of the persistence factor 𝛽𝑡 by the 

mean of linear regression (LR) or direct cut-off mechanisms. The image segment-based (also called “object-
based”) automatic change detection ensure a stable spatial baseline of the analysis across the different epochs 
observed by the different sensors, minimizing the spurious probabilities possibly originated by the misalignment 

of the image raster grids, thus minimizing the error of the change information inferred from the ⊛ Φ𝑡 ..  Two 

main approaches are tested regarding the decision composite at the segment level: a. binary decision 
mechanism (BIN) and continuous decision mechanism (CON). BIN engine is based on different strategies for 

automatic finding of a best ⊛ Φ𝑡 . cut-off based on available prior information, while the CON engine in based 

on linear regression (LR). In both cases, a multiple-decision support approach is taken: as set of 7 strata define 
the change detection problem from different machine learning point of views (ML STRATA), and N best models 
predicting changes are selected for each ML STRATA, thus they are composite in one final ensemble decision. 
This methodological choice is designed in order to increase the accuracy and the robustness of the automatic 
change detection, allowing the inferential engine to concentrate in specific simpler tasks or objectives defined 
by the ML STRATA, and founding the final decision on the robust model ensemble of the best model predictors 
by strata.  Lastly, the model decision is aggregated and evaluated at the raster cell grid of 100m-resolution, 
MWD projection, that is the GHSL product specification.  

 

Figure 4 – Conceptual design of the method for semantic PHI extraction, composition and aggregation. 

Given the conceptual design of the method, the experimental workflow was organized around two main steps:  
A) understanding how to best extract sematic Φ from Landsat Imagery and compose in multiple—scene single-

epoch optimized summary ⊛ Φ𝑡 per strata (Figure 5), and B) understanding how to composite the best 

semantic ⊛ Φ𝑡 . from the various strata to the final ensemble decision (Figure 6).  
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Figure 5 – Main experimental step A: understanding how to best extract sematic PHI from multi-temporal Landsat Imagery 

The inputs of the experimental step A are i) the sub-pixel built-up surface estimates from the S2 image data 
at 10m-resolution (BUFRAC), ii) various strata domains used to support the machine learning (ML STRATA), iii) 
historical earth observation data collected by the Landsat program (LDS imagery) organized in four epochs 
(2014, 2000, 1990, and 1975), a set of multi-temporal land cover classification of the earth surface (Priors) 
done by previous GHSL releases or other studies, that can be considered as prior knowledge regarding global 
evolution of global  built-up surfaces, and finally the multi-temporal building footprints data (MTBF) that are 
used for evaluation purposes (Figure 7 - Figure 12). The outputs of the experimental step A are the best prior, 
the BIN ranking of the best change predictor model by strata, and the CON ranking of the best change predictor 
model by strata. They are used in input of the experimental step B (Figure 6), focused on testing the composite 
of different ensemble decision (multiple-predictors, multiple-strata/objective) for each epoch.  

 

 

Figure 6 – Main experimental step B: understanding how to composite the best semantic PHI from various strata to the final 
ensemble decision  
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Figure 7 – Example of reference MTBF data test case name US_GA_City_of_Johns_Creek N-E Atlanta, USA. Dark red 1975, 
red 1990, orange 2000, yellow 2014, magenta 2018. Transparent buildings have no temporal data attached. 

 

 

Figure 8 – Example Landsat image data from the epoch 2014, MTBF overlay 
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Figure 9 – Example of Landsat image data from the epoch 2000, MTBF overlay 

 
 

 

Figure 10 – Example of Landsat image data from the epoch 1990, MTBF overlay 
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Figure 11 – Example of Landsat image data from the epoch 1975, MTBF overlay 

 
 

 

Figure 12 – New sub-pixel built-up surface fraction prediction (BUFRAC) from S2 image data 2018, MTBF overlay 
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3.3 Baseline spatial data definition 

 BUFRAC segmentation 

BUFRAC is the sub-pixel built-up surface prediction made at 10m-resolution from S2 image data composite of 
the most recent year observed in this study (2018), noted as 𝑓𝑥𝐵𝑈𝑡=2018. Watershed segmentation techniques 
are used to extract image segments (Figure 13) from this raster data. In particular, the watershed segmentation 
was obtained from the inverse of the 𝑓𝑥𝐵𝑈𝑡=2018 at 10m-res, filtered by a local Gaussian low-pass filtering 
(𝜎 = 0.5) in order to reduce over-segmentation. Image segments are used as constant spatial baseline for the 
subsequent multi-temporal classification supported by the historical Landsat image data collections. Generally, 
the sematic Φ estimated at the grid level of the Landsat imagery, is downscaled to the 10m-res segment by 
the surface-weighted average operator.  

 

Figure 13 – Watershed segmentation of the BUFRAC 10m supporting the multi-temporal assessment from the historical 
Landsat imageries, MTBF overlay 

 ML STRATA 

The machine learning strata are defined in order to provide more specific tasks or objectives to the automatic 
change detection prediction, taking in to account the know technical characteristics of the EO sensors and the 
known physical characteristics of the semantic targets (buildings, settlement spatial-temporal patterns). They 
are seven non-mutually-exclusive strata defined as follows 

1. COMPACT: the target built-up structure (BU) observed by the specific sensor is collected as a patch of 
adjacent samples (pixels), thus largely influenced by the radiometric reflection of the foreground built-
up neighbouring surfaces (BU). The samples belonging to this stratum are potentially exposed to 
underestimate of the change due to the similarity to the foreground information associated with the 
BU abstraction class. 

2. SPARSE: the target built-up structure (BU) observed by the specific sensor is collected as isolated 
sample (pixel), thus largely influenced by the radiometric reflection of the background non-built-up 
(NBU) surfaces.  The samples belonging to this stratum are potentially exposed to overestimate of the 
change due to the similarity to the background information associated with the NBU abstraction class. 

3. RES: the target built-up structure is classified as residential, according to the GHSL specs (European 
Commission. Joint Research Centre. 2023). Thus, having expected average size (scale) in the order of 
10 meters producing specific radiometric mixture in the EO raster data composing the reflection of the 
roof material, the reflection of the surrounding surfaces (gardens, roads, soil), and – important – a 
relatively large shadow component.  
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4. NRES: the target built-up structure is classified as non-residential, according to the GHSL specs 
(European Commission. Joint Research Centre. 2023). Thus, having expected average size (scale) in the 
order of 100 meters producing specific radiometric mixture in the EO raster data composing the 
reflection of the roof material, the reflection of the surrounding surfaces (parks, roads, soil), and – 
important – a relatively small or absent shadow component. 

5. IN_PRIOR: the target built-up structure is belonging to the spatial domain already solved by existing 
semantic multi-temporal global priors having their specific limitations and methodological constraints.  
Thus, available global MT priors can be used to support the automatic change decision process.   

6. OUT_PRIOR: the target built-up structure is outside the spatial domain already solved by existing 
semantic multi-temporal global priors having their specific limitations and methodological constraints.  
It is new built-up surface domain discovered by the S2 image data classification in 2018. Thus, 
available global MT priors cannot be used to support the automatic change decision process. 

7. ALL: The logical union of all the above strata, ensuring a coherent average response across the various 
specific strata. 

 

Examples of the above mentioned strata in the N-E of Atlanta, US are displayed in the Figure 14, Figure 15, 
Figure 16, Figure 17, Figure 18, and Figure 19. 

 

 

Figure 14 - Membership to the COMPACT strata of the image segments supporting the MT classification. N-E Atlanta, US. 
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Figure 15 - Membership to the SPARSE strata of the image segments supporting the MT classification. N-E Atlanta, US. 

 

 

 

Figure 16 - Membership to the RES strata of the image segments supporting the MT classification. N-E Atlanta, US. 
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Figure 17 - Membership to the NRES strata of the image segments supporting the MT classification. N-E Atlanta, US. 

 

 

Figure 18 - Membership to the IN_PRIOR strata of the image segments supporting the MT classification. N-E Atlanta, US. 
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Figure 19 - Membership to the OUT_PRIOR strata of the image segments supporting the MT classification. N-E Atlanta, US. 

 Evaluation of the priors 

The PRIORS are used in several steps of the GHSL MT classification: i) training set for machine learning, ii) 
rescaling or standardization of the decision support, and iii) data fusion in hybrid predictions including gap filling.  

GAIA, GAUD, GISA, GISA2.0, GISD30, WSFEVO, GHS_P2016, GHS_P2019, priors are evaluated and compared 
with the GHS_P2022A benchmark for their capacity to predict the BU surface changes of the anchor point 2018 
vs. other GHSL epochs 2014, 2000, 1990, and 1975.  

Additionally, composites of union of the priors (UCOMPO) are evaluated and compared with the GHS_P2022A 
benchmark: be BU_2018 the BU surface predicted in the epoch 2018, and be U_OFF(t) the union of all the prior 
signals to switch off the BU_2018 in a specific epoch t (2014, 2000, 1990, 1975), and U_ON(t) the union of all 
the prior signals to maintain switched on the BU surface in the specific epoch t (2014, 2000, 1990, 1975). Four 
UCOMPO options (A, B, C, D; Figure 20) are evaluated: In the “all the change” option (B and D) the whole U_OFF(t) 
is taken, while in the “conservative change” option (A and C) only the domain of U_OFF(t) not contradicting the 
BU_ON(t) its retained, thus the intersection of the U_OFF with the negation of the U_ON is taken (exclusive or 
logic, also called XOR). Moreover, two supporting sets for the priors are evaluated: “all the priors” (A and B) and 
“selected priors” subset (C and D).  

Figure 21 shows the accuracy of the single priors in predicting the stock of BU surface in the epochs 1975, 
1990, 2000, 2014, and 2018. According to these findings WSF_EVO, GISA, and GHS_B_P2019 are selected to 
support the UCOMPO_C and UCOMPO_D options. WSF_EVO has the best performances in mid epochs but not 
including the extrema, GISA is the prior including the extrema with the best performances, and the 
GHS_B_P2019 in the UCOMPO would improve consistency with previous GHSL releases (user requirements).  

Figure 22 shows the accuracy of the single priors compared with the UCOMPO priors in predicting the stock of 
BU surface in the epochs 1975, 1990, 2000, 2014, and 2018. Average of the URBAN, RURAL application domain 
strata. These findings support the choice of the UCOMPO_D option (WSF_EVO, GISA, and GHS_B_P2019, all the 
change) as the best option to predict changes vs. the target epoch 2018. This choice is confirmed by the 
observation of the accuracy in predicting the change map from 2018 to the other epochs (2014, 2000, 1990, 
and 1975), where the UCOMPO_D rank the best in all the epochs (Figure 23). 
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The capacity of the UCOMPO_D to predict continuous changes from the anchor point 2018 to the other epochs 
(2014, 2000, 1990, and 1975) is compared with the other available options using the Pearson linear correlation 
coefficient, and the UCOMPO_D solution is confirmed as the best performing in both URBAN and RURAL 
application domain strata (Figure 24, Figure 25, Figure 26). 

 

 

Figure 21 – Accuracy of the single priors in predicting the stock of BU surface in the epochs 1975, 1990, 2000, 2014, and 
2018. Average of the URBAN, RURAL application domain strata. 

 

 

UCOMPO priors alternatives: 

• A: all the priors, conservative change 
• B: all the priors, all the change 
• C: selected priors, conservative change 
• D: selected priors, all the change 

U_ON 
Union of the positive at the begin date excluded 

in the “conservative” case 

U_OFF 
Union of the change from begin date to end date 

Figure 20 - Logical schema of the union of the prior composite (UCOMPO) applied in the study 
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Figure 22 - Accuracy of the single priors compared with the UCOMPO priors in predicting the stock of BU surface in the 
epochs 1975, 1990, 2000, 2014, and 2018. Average of the URBAN, RURAL application domain strata 

 

 

 

Figure 23 - Accuracy of the priors and the UCOMPO_D in predicting the change from the epoch 2018 to relevant points in 
time 2014, 2000, 1990, and 1975. Average of the URBAN, RURAL application domain strata.  
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Figure 24 – Linear correlation (Pearson rho) of the change map multiplied with BU surface 2018, with observed changes in 
MTBF between the 2018 anchor point and the epochs 2014, 2000, 1990, and 1975. Average of the URBAN, RURAL 
application domain strata 
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Figure 25 - Linear correlation (Pearson rho) of the change map multiplied with BU surface 2018, with observed changes in 
MTBF between the 2018 anchor point and the epochs 2014, 2000, 1990, and 1975. URBAN application domain strata 

 

Figure 26 - Linear correlation (Pearson rho) of the change map multiplied with BU surface 2018, with observed changes in 
MTBF between the 2018 anchor point and the epochs 2014, 2000, 1990, and 1975. RURAL application domain strata 

3.4 Multiple-scene semantic composite 

In the model discussed here, an innovation  is introduced regarding the resuming of the Φ  inferences collected 
from multiple input images (or “scenes” in the Landsat glossary) when assessing the same spatial sample and 
falling in the same nominal epoch interval. Satellite imagery are collected in a precise point in time (hour, day), 
falling in determined conditions of illumination, changing atmospheric conditions (clouds, cloud shadows, haze, 
humidity, and other turbidity components in atmosphere) and seasonal changes (vegetation, water, soil 
reflectance changing), determining various conditions of separability between the semantic foreground (the 
target class) vs. the background (the logical complement). The SML classification approach allows to make 
continuous learning, discovering the best rules associating image data to a specific semantic at low 
computational cost, therefore allowing to avoid model transfer from spatial and temporal domains different 
than the one processed in the specific image under classification. This fact augment the precision of the 
inference at the specific point in time of each different satellite imagery, by providing the best discriminant 
function at the precise conditions of the image data collection. Still, different satellite imagery in different points 
in time will report about different Φ assessing the same spatial samples and the same semantic, because of 
the changing semantic foreground-vs-background separability conditions in each input image. In the model 
solution discussed here a new composite mechanism called “cumulative divergent Φ  composite” is adopted. 
The basic idea of this approach is that for each spatial sample we can cumulate the semantic Φ  available from 
different imageries in different point in time by independent maximization of the hypothesis that the sample 
belongs to the foreground vs. the background semantic: e.g.  Φ𝐵𝑈 vs.  Φ𝑁𝐵𝑈 in the application discussed here. 
By maximization of the foreground vs. the background semantic hypothesis, we ensure that we pick up the 
best-discriminant point in time assessed by the available images, where the specific sample x was associated 
to a specific semantic and his semantic competitor.  The final decision on which semantic should be associated 
to the sample x is done after the maximization of the divergent hypothesis, ensuring they all have the same 
chance of success in the available supporting image data. The maximized Φ over multiple image data collected 

in the given epoch t is noted as ⊛ Φ𝑡 . By definition, the statistical distribution of the composed ⊛ Φ𝑡 by 

maximization of divergent hypothesis will be more polarized toward the extrema as compared to the single-
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scene Φ : this fact decreases the domain of incertitude, where the SML Φ inference is around the intermediate 
zero domain. Moreover, also by mathematical construction, the samples biased by non-stationary noise in a 
given image,  under the condition that are randomly placed in the spatial domain vs. the learning set supporting 
the SML, will receive a semantic Φ score around the zero value (the intermediate value in [-1..1] range) in any 
given image. Therefore, the influence of the non-stationary noise in the input images is minimized by 

construction in the composed ⊛ Φ𝑡 .  Relevant non-stationary noise in the satellite data processed in this work 

include cloud obstructions, cloud shadows, or anomalies in the sensor (e.g stripes of anomalous values in the 

old MSS data). The minimization-by-construction of non-stationary noise in the composed ⊛ Φ𝑡 inference, 

allowed us to avoid relying on specific models for detection of clouds or other obstructions/anomalies in the 
images, on the contrary to common practices allocating such models in the pre-processing phase. Therefore, in 
the solution designed here we decrease the model dependency to external assumptions. Figure 27 shows the 
dominant paradigm in multiple-scene classification composite: image data is transformed in measurements of 
absolute amount of energy (reflectance calibration), clouds, shadows and other obstructions are masked out 
from valid data using additional hypothesis and parameters, thus the inference is made and the final output is 
mosaicked. A simplified version of this masking-composite approach (radiometric calibration was excluded) was 
also applied in the previous releases of the GHSL (M. Pesaresi, Ehrlich, et al. 2016) (Corbane et al. 2019). In 
alternative, images can be composed upstream e.g. with the objective to minimize cloud cover and thus the 
inference is extracted from the “cloud-free” image composite (Figure 28): this is the approach taken for the 
extraction of the BUFRAC. Figure 29 shows the paradigm applied in the work discussed here. The multiple-class 
inference is extracted from single scenes, and subsequently composed by maximization of all the semantic 
hypothesis, thus the decision is taken after the maximization.  

 

Figure 27- Multiple-image classification paradigm A: "mosaic of the single-image inference" 
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Figure 28 - Multiple-image classification paradigm B: inference from the image composite” 

 

 

Figure 29 – Multiple-image classification paradigm C: “composite of the inference” 

3.5 Model architecture  

The prediction of the image segment changes from BU to NBU (switch off) is based on the application of the 
SML generalized to the multiple-quantization case, using in input the quantized values recorded in the different 
bands of the Landsat satellite imageries. Two main approaches are tested: a binary (BIN) change detection 
schema and b) a continuous (CON) change detection schema. 

The model architecture for image segment changes is defined by the combination of 7 model architectural 
choices listed below: 



 

 

 

31 

1. TRAIN_STRATA: which strata is used for training set sampling.  

a. 'ALL': the whole data tile under processing,  

b. 'COMPACT': the compact BU patches,  

c. 'SPARSE': the sparse BU samples,  

d. 'COMPO': a linear composite of COMPACT and SPARSE.  

2. SAMPLING: which strategy is used for random train sampling. In the case of target BU surface, being 
the positive examples rare they are all sampled, while a sampling strategy is need for the negative 
examples belonging to the semantic background: 

a. 'EQNEAR': equalized random sampling of the negative examples in the neighbouring of the 
positive samples. 

b. 'EQFULL': equalized random sampling of the negative examples in the whole semantic 
background of valid data,  

c. 'FULL': all the available negative samples are used.  

3. DECISION: which logical combination (data fusion) of semantic Φ𝑥 and prior 𝑃𝑥 is used for supporting 
the decision 𝐷𝑥 at the spatial sample x: 

a. 'PRIOR': only the change rates as extrapolated from available priors   𝐷𝑥 =  𝑃𝑥 

b. 'PHI' : only the Φ from SML is used 𝐷𝑥 =  Φ𝑥 

c. 'PHI_OR_PRIOR' : the fuzzy union is considered 𝐷𝑥 = max(𝑃𝑥, Φ𝑥) 

d. 'PHI_AND_PRIOR', the fuzzy intersection is considered 𝐷𝑥 = min(𝑃𝑥, Φ𝑥) 

e. 'PHI_MED_PRIOR'. The median decision is considered 𝐷𝑥 =  𝑃𝑥 +  Φ𝑥 2⁄  

4. PHITYPE: which PHI type (M. Pesaresi, Syrris, and Julea 2016) is used for supporting the decision: 

a. 'PHI_A', Φ𝐸
𝑎(𝑋, 𝑌+, 𝑌−) =  𝑓+ − 𝑓− 𝑓+ + 𝑓−⁄  using frequency of occurrences: maximization of 

the overall accuracy 

b. 'PHI_B', Φ𝐸
𝑏(𝑋, 𝑌+, 𝑌−) =  𝑝+ − 𝑝− 𝑝+ + 𝑝−⁄  using empirical probabilities: maximization of 

the balanced accuracy  

c. 'PHI_AB'. Φ𝐸
𝑎𝑏 =  Φ𝐸

𝑎 + Φ𝐸
𝑏 2⁄  : median solution  

5. PHISEMANTIC: which maximized ⊛ Φ is used to support the change decision: 

a. 'BU',  ⊛ Φ𝑡 = max (1 − Φ𝐵𝑈
𝑠∈𝑡) 

b. 'NBU', ⊛ Φ𝑡 = max (Φ𝑁𝐵𝑈
𝑠∈𝑡 ) 

c. 'NBU_BU_D': NBU-BU difference, ⊛ Φ𝑡 = max (Φ𝑁𝐵𝑈
𝑠∈𝑡 − Φ𝐵𝑈

𝑠∈𝑡) 

d. 'NBU_BU_ND': normalized NBU-BU difference, ⊛ Φ𝑡 = max (Φ𝑁𝐵𝑈
𝑠∈𝑡 − Φ𝐵𝑈

𝑠∈𝑡 Φ𝑁𝐵𝑈
𝑠∈𝑡 + Φ𝐵𝑈

𝑠∈𝑡⁄ ) 

e. 'OFF_factor': ⊛ Φ𝑡 = max (Φ𝑁𝐵𝑈
𝑠∈𝑡 Φ𝐵𝑈

𝑠∈𝑡⁄ ) 

6. PHITEMPORAL: which strategy is used to maximize the semantic ⊛ Φ extracted from the Landsat 
imagery (Figure 30): 

a. 'BYEPOCH': each epoch collection is considered independently for the maximization purpose,  

b. 'INTERLACED': image data of the various epochs are interlaced in the maximization of the BU, 
NBU semantic PHI.  

7. PHIFUN: which function is used to downscale the sensor-derived raster semantic Φ𝐵𝑈 , Φ𝑁𝐵𝑈 to the 
spatial baseline image segments (Figure 4): 

a. 'fun_meanGT0': the average of the valid Φ𝐵𝑈 , Φ𝑁𝐵𝑈 data,  
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b. 'fun_max': the maximal value of the valid Φ𝐵𝑈 , Φ𝑁𝐵𝑈 data.  

 

 

 

Figure 30 - PHITEMPORAL maximization of the BU, NBU class abstraction hypothesis across the remotely sensed data 
collections 

 Model architecture ranking 

A total of 3 600 combinations of model architecture were tested for each of seven ML STRATA and each of four 
change epochs (2014-2018, 2000-2018, 1990-2018, and 1975-2018), for a total of 100 800 experimental 
tests. Binary (BIN) and continuous (CON) model predictions were evaluated using MTBF as the reference data. 
Only the most restrictive set of the REF data domain was retained in this experimental design, which was 
passing the test for the 2014-2018 change detection.  

The binary (BIN) model is obtainable by a direct cut-off of the SML PHI model prediction in the binary change 
set: higher values of PHI indicating NBU than BU result in the binary decision to “switch-off” given segment.   

The BIN choice evaluation is done by the receiver operating characteristic curve (ROC) technique, the used metric 
is the maximal Jaccard Similarity (Jaccard 1901), a metric commonly used in information retrieval, machine 
learning and image processing for estimation of similarity of objects (Kosub 2019). The Jaccard index J 
measures the relative size of the overlap of two finite sets: 

𝐽(𝑋𝐵𝐼𝑁 , 𝑌𝐵𝐼𝑁) ≝
|𝑋𝐵𝐼𝑁 ∩ 𝑌𝐵𝐼𝑁|

|𝑋𝐵𝐼𝑁 ∪ 𝑌𝐵𝐼𝑁|
 

Where XBIN is the predicted semantic on segment level, YBIN is the observed semantic, and |∙| denote the cardinal 
of the set, that is the number of segments that either intersect or overlap. 

The continuous (CON) choice evaluation is solved by observation of the Pearson linear correlation coefficient 
for predicted vs. observed amount of built-up surface changes relatively to the 2018 anchor point:  

𝜌(𝑋𝐶𝑂𝑁 , 𝑌𝐶𝑂𝑁) =
𝑐𝑜𝑣(𝑋𝐶𝑂𝑁 , 𝑌𝐶𝑂𝑁)

𝜎𝑋𝐶𝑂𝑁
, 𝜎𝑌𝐶𝑂𝑁

 

Where XCON is the predicted change of built-up surface change between given epoch and 2018 in each segment, 
YCON is the observed change, 𝑐𝑜𝑣 is the covariance and 𝜎 is the standard deviation of predicted and observed 
changes on segment level. 
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For each ML STRATA, we ranked the combinations of model architecture per change epoch, by decreasing 
Jaccard Similarity index for BIN predictions, and by decreasing Pearson coefficient for CON predictions. 

3.6 Ensemble decision model design 

The ensemble decision is made in order to increase the robustness and the accuracy of the final decision to 
switch off a specific spatial sample containing BU surface in 2018. As the decision can be either binary (BIN) or 
continuous (CON), thus the architecture of the ensemble is tested across different options regrouped under the 
BIN and CON branches.   

 BIN branch 

Under this hypothesis, the following options are tested 

a) FINAL_DECISION_TYPE: whether is better to rely on a single model prediction over the ALL strata vs. 
the composite of various strata 

b) NBESTMODEL: number of best models supporting the decision at each strata. Option of 1:5 was tested. 

c) CUTOFFCASE: which strategy can be used to cut-off the base model response to a binary decision 
(support). 11 options including the application of the average best cut-off by model by strata learned 
from the ROC analysis, and the adaptive learning of good cut-off by observation of the model 
prediction in the prior change domain.  

d) FINALDECISION: how we compose the multiple decision support stack to the ensemble decision. 20 
options tested including voting schema (additive approach) and associative rule learning (data pattern 
recognition)     

 CON branch 

Under this hypothesis, the following options are tested 

a) FINAL_DECISION_TYPE: whether is better to rely on a single model prediction over the ALL strata vs. 
the composite of various strata 

b) NBESTMODEL: number of best models supporting the decision at each strata. Option of 1:5 was tested. 

c) FINALDECISION: how we compose the multiple decision support stack to the ensemble decision. 
'MEDIAN', 'MEAN', 'MIN', 'MAX', and quantile 'Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6', 'Q7', 'Q8', 'Q9' options were 
tested.  

3.7 Multi-objective model ensemble selection 

For each change epoch (2014, 2000, 1990, and 1975 vs the 2018 anchor point), three agreement measures 
are calculated: the Ruzicka distance of the predicted vs. the observed change grids, and the mean absolute error 
(MAE) of the built-up surface change rate in the URBAN and RURAL application domains; all using the MTBF as 
the reference. 

The Ruzicka distance measures are calculated for model predictions aggregated to 100 m grids,. Only the most 
restrictive set of the REF data domain was retained in this experimental design, which was passing the test for 
the 2014-2018 change detection. The Ruzicka distance is formulated as the inverse of the Ruzicka similarity: 

𝑑𝑅𝑢𝑧 = 1 −  
∑ min(𝑓𝑥 , 𝑟𝑥)𝑥

∑ max(𝑓𝑥 , 𝑟𝑥)𝑥

 

Where 𝑓𝑥 and 𝑟𝑥 are vectors of the x 100m-res spatially explicit grid cells with non-negative real numbers 
reporting about, respectively, the predicted and observed persistence factor 𝛽𝑡∈[1975,1990,2000,2014], with: 

𝛽𝑡∈[1975,1990,2000,2014] =   𝑓𝑥𝐵𝑈𝑡=2018 𝑓𝑥𝐵𝑈𝑡∈[1975,1990,2000,2014] ⁄  

The change rate of built-up surface area informs about the increase of built-up surface in-between the observed 
epochs, and is required by spatial policy indicators (SDG11 for example). We calculate change rate of built-up 
surface in the admin units used as test cases in the experiment, stratified per URBAN and RURAL domain as 
determined by the GHS-SMOD R2022A predictions at 1km of spatial resolution.   
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𝐵𝐶𝑡 =
𝐵𝑡+1 − 𝐵𝑡

𝐵𝑡

× 100% 

Where 𝐵𝑡  is the built-up surface predicted in time t in a given admin unit used as test case in the experiment, 
and in the specific URBAN vs. RURAL strata. The MAE of the built-up surface persistence factor 
𝛽𝑡∈[1975,1990,2000,2014] was computed for each model ensemble, in each observed change epoch, for N number 

of admin units used as test cases in the experiment (samples): 

𝑀𝐴𝐸𝑡 =
∑|𝐵𝐶𝑡_𝑜𝑏𝑠 − 𝐵𝐶𝑡_𝑝𝑟𝑒𝑑|

𝑁
 

We apply Pareto multi-objective optimization (Pareto 1912) for selecting the optimal solution from the model 
ensemble for each change epoch. The ensemble predictions are evaluated under three objectives:  

1. minimize the Ruzicka distance of the predicted vs. the observed change grids 

2. minimize the MAE of the change rate error in the URBAN application domain stratum  

3. minimize the MAE of the change rate error in the RURAL application domain stratum 

For each change epoch, a set of non-dominated solutions (Pareto front) is ranked by minimization of the 
distance to the optimal (Utopian) solution, with the highest performing model selected as the final solution for 
the given observed epoch (1975, 1990, 2000, 2014). 

3.8 Building 5-year interval time-series of built-up surfaces and volumes 

 General workflow for 5-year interval time-series 

The general logic of the spatial-temporal interpolation and extrapolation solution applied here is summarized 
below: 

1. Analyse the multi-temporal evolution of the BU support domain defined as the spatial domain where 
predicted built-up surface is greater than zero.  

𝐵𝑈𝑡∈[1975,1990,2000,2014,2018]
𝑥>0 = 𝑥 ∶   𝑓𝑥𝐵𝑈𝑇𝑂𝑇 𝑡∈[1975,1990,2000,2014,2018]

𝑆 > 0 

2. Predict the sum of the BU support domain  ∑ 𝐵𝑈𝑡𝜖1975:5:2030
𝑥>0

𝑥  per data tile of 100x100km 

a. in the years 1975:5:2020: solved by piecewise linear interpolation based on nearest observed 
temporal anchor points  

b. in the years 2025,2030: solved by extrapolation of the curve fit determined at point 1.  

3. Predict the 𝑓𝑥𝐵𝑈𝑡∈1975:2030 quantitative grids per data tile of 100x100km 

a. In the years 1975:5:2020: solved by linear interpolate the 𝑓𝑥 predictions based on nearest 
observed anchor points.  

b. In the years 2025, 2030: solved by 𝑓𝑥  spatial pattern generative algorithm  

4. Spatially allocate the predicted 𝐵𝑈𝑡𝜖1975:5:2030
𝑥>0  support domain samples in the 𝑡𝜖1975: 5: 2030 equal-

time interval by spatial rank optimization, knowing the expected  ∑ 𝐵𝑈𝑥>0
𝑥  per data tile (100x100km). 

5. Calculate the final spatial-temporal interpolated 𝑓𝑥𝐵𝑈⃛ quantitative grids as product of the 𝑓𝑥𝐵𝑈 
quantitative grids by the 𝐵𝑈𝑥>0 Boolean support domain predicted in the 𝑡𝜖1975: 5: 2030 : 

𝑓𝑥𝐵𝑈⃛𝑡∈1975:5:2030 =  𝑓𝑥𝐵𝑈𝑡∈1975:2030  ∙  𝐵𝑈𝑡𝜖1975:5:2030
𝑥>0  

 

Step 1 is solved by polynomial curve fitting of the ∑ 𝐵𝑈𝑥>0
𝑥  sum per data tile (100x100km) in function of the 

time. Two scenarios are developed: i) first order (linear) polynomial, ii) second-order polynomial. Final prediction 
of ∑ 𝐵𝑈𝑥>0

𝑥  in function of the time, based on the median solution between the two scenarios. 

Step 4 of the above schema is solved by spatial-temporal interpolation or extrapolation of five observed epochs 
(1975, 1990, 2000, 2014, 2018), based on a rank-optimal spatial allocation method. This supporting spatial 
optimization function combines static and dynamical components: the static component, Empirical Land 
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Suitability (ELS), is determined by the observation of the empirical association between the occurrence of 
specific land form combinations (slope, elevation, water and high vegetation) and the occurrence of human 
settlement development from remotely sensed data. The empirical association is measured using symbolic 
machine learning (M. Pesaresi, Syrris, and Julea 2016). The dynamical component (BUDYN) is based on the 
spatial dynamics of the BU surface in the observed epochs, decomposed in a change (growth, or shrink) vs 
inertial (i.e. unchanged) BU dynamical field components. 

 Empirical Land Suitability 

The “Empirical Land Suitability” (ELS) is a spatial grid representing the probability of a given grid cell of becoming 
developed based on the empirically and locally estimated association between the increase in built-up surface 
in period 1975-2020 and the land form combination. The built-up increase domain is defined by 100 m 
resolution grid cells where surface of built-up area in 2020 is greater than surface in 1975. The land form 
combination is evaluated at the spatial resolution of 100m. It includes elevation, slope, distance to water, and 
distance to high vegetation. The elevation information is derived from global open Copernicus DEM (GLO-30), 
at 30 m spatial resolution (European Space Agency and Airbus 2022) generalized to the 100m-res by surface-
weighted average. Slope is generated by application of morphological grey-tone gradient defined as dilation 
minus erosion (Serra 1982) with a flat structuring element of 3x3 pixels to the 100m-res generalized elevation 
layer. The presence of water is derived from GHSL land fraction grid (Martino Pesaresi and Politis 2022), for 
pixels with land fraction lower than 0.9. The presence of high vegetation is derived from NDVI composite 
(Corbane et al. 2018), using pixels with values greater than 0.5. Distance to water and distance to high 
vegetation information layer is derived by application of Euclidean distance function. We apply associative rule 
learning algorithm on quantized land form combination per 100x100 km data tile, thus the output Φ𝐸𝐿𝑆 
expresses the empirical association (range [-1..1]) between observed land forms and the presence of new built-
up surfaces in period 1975-2020, in the specific 100x100km data tile where the inference was evaluated 
(Figure 31).  

 

Figure 31 – ELS spatial grid for area of the city of Pittsburgh, Pennsylvania (US). ELS values grow from dark blue (low 
suitability) to light green (high suitability).  

 Dynamic trends in built-up surface (BUDYN) 

Built-up dynamics (BUDYN) is a spatial estimation of the expansion potential of the built-up domain in time, 
decomposed in two factors  

• “expansion” factor 𝑓+ : the tendency to expand the settlement, as determined  by human need interlinked 
with local conditions/opportunities Ώ 

• “inertial” factor  𝑓− : the tendency to maintain the status quo, as determined by human need interlinked 
with local conditions/opportunities Ώ 
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Both 𝑓+ ,  𝑓−  are expression of the same implicit drivers: local human needs interlinked with local 
conditions/opportunities Ώ. The effect of those drivers can be measured empirically from the observed data on 
the built-up surfaces over time, without the need to collect additional spatial information about forbidden 
expansion areas (as protected areas, religious or cultural heritage respect areas and similar), plans, regulations, 
local practices, market preferences etc. as it is common practice in spatial temporal extrapolation models.  

The factors 𝑓+ ,  𝑓−  are formalized in the spatial grid of 100m-res by the application of two spatial operators 
to the spatial variable 𝑓𝑥:  

a) The probabilistic potential field of 𝑓𝑥 at the scale s:  𝑃𝑠(𝑓𝑥). Solved by the application of a Gaussian 
low-band-pass filter with a kernel of size s. 

b) The spatial expansion of 𝑓𝑥  at the scale s: 𝐷𝑠(𝑓𝑥). Solved by the application of a morphological dilation 
of 𝑓𝑥 using a non-flat structuring element of spherical shape and size s (Haralick and Shapiro 1992). 

The measured change and inertia assuming two points in time t1>t0 are formalized as 

a) Measured positive change (expansion):  𝐶1𝑥 = 𝑥 ∶ 𝑓𝑥𝐵𝑈𝑡1 > 𝑓𝑥𝐵𝑈𝑡0 

o Definition: “measured change from t0 to t1 is greater than zero at the sample x point” 

b) Measured zero change (inertia): 𝐶0𝑥 = 𝑥 ∶  {
𝐷𝑠(𝑓𝑥𝐵𝑈𝑡0) > 0

𝑓𝑥𝐵𝑈𝑡1 − 𝑓𝑥𝐵𝑈𝑡0 = 0
  

o Definition: “the sample x could have changed because spatially close to positive evidence at 
t0,  but it was observed as stable at t1” 

The potential fields of the measured changes and inertia are defined as 

a) The potential of expansion: 𝑃𝐶1𝑥 =  𝑃𝑠(𝐶1𝑥) 

b) The potential of inertia: 𝑃𝐶0𝑥 =  𝑃𝑠(𝐶0𝑥) 

Finally, the spatial expansion of the potential fields 𝑓+ ,  𝑓− are defined as   

a) Spatial expansion of the expansion potential 𝑓+ =   𝐷𝑠(𝑃𝐶1𝑥) 

b) Spatial expansion of the inertial potential 𝑓− =   𝐷𝑠(𝑃𝐶0𝑥) 

The BUDYN model is substantially deductive, thus designed to work with a limited number of assumptions in 
unsupervised way. The only inductive parameter is the scale s informing the size of the spatial potential 𝑃𝑠(𝑓𝑥) 
and the spatial expansion 𝐷𝑠(𝑓𝑥)  operators.  The scale s was estimated by observing the average size of built-
up domain expansion defined as 𝑓𝑥𝐵𝑈 > 0 in the maximum temporal period considered in the study (1975-
2020). The s estimate is done by each processing data tile of 100x100km. Figure 32 shows the output of the 
BUDYN in the territory of the plain around the city of Troyes (FR). The factors 𝑓+ ,  𝑓−  are composed in the 
green and red+blue channels, respectively, of the RGB colour composition. Samples that are built in 2020 are 
masked out with a grey tone. In this representation, samples with magenta tone have a dominant  𝑓−  
component, samples with green tone have a dominant 𝑓+ component, and samples with white tone have both 
𝑓+ ,  𝑓− factors equally active. E.g. in predicting which spatial samples will be switched on in the future 2025 
point in time, the samples with a green tone will have a precedence respect to the ones with a magenta tone. 
It is worth to notice that the BUDYN model provides spatially anisotropic predictions informed by the spatial-
temporal trends measured from data.  Similar size settlements, in the same geographical conditions (alluvial 
plane, no visible physical obstacles) can be predicted to behavior very differently in the temporal domain: case 
A more dynamical expansion, vs. case B where the dominant component is static inertial. The reasons why those 
two settlements are performing differently in the temporal domain remain implicit in the model without the 
need to introduce new supporting data and explanatory hypothesis, as could be the introduction of propriety 
data or local spatial regulation data that may contribute to explain the observed spatial-temporal pattern. The 
similar observation can be done for the case C: this small town exhibits a clear preference of anisotropic 
expansion on the right side, while the left side has a stronger inertial component. In the decision where to 
allocate new BU support samples the right side will have priority based on past spatial-temporal trends.  
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Figure 32 - BUDYN composite for city Troyes in France, showing expansion factor related to the built-up area change between 
time steps t1 and t0; and inertial factor related to the built-up area in time step t0. Colors indicate the values of each band: 
expansion – green; inertial – magenta; both – white. Built-up areas in 2020 are marked in grey.  

 Rank-optimal spatial allocation of the BU support domain  

The logical schema of the rank-optimal allocation of the BU domain is as follows: 

Given it is known the sum of the samples n that should change from the state 𝛼: 𝑓𝑥𝐵𝑈𝑇𝑂𝑇 𝑡
𝑆 = 0  to the state 

𝛽: 𝑓𝑥𝐵𝑈𝑇𝑂𝑇 𝑡+1
𝑆 > 0 , in the change from the time t to the time t+1, in a given spatial domain D. 

The solution is provided by ranking all the samples 𝛼 ∶  𝑓𝑥𝐵𝑈𝑇𝑂𝑇 𝑡
𝑆 = 0, 𝑥 ∈ 𝐷 by a function objective 

𝑓𝑜𝑏𝑗  expressing the probability to change state → 𝛽 , and thus by selection of the n top candidates.  

The above process is done piecewise iteratively for all the time points solving the 1975:5:2030 series (see 
logical schema in chapter 3.8). The scale parameter for calculating the  𝑓+, 𝑓−  factors is estimated in the local 
data tile of 100x100km based on average size of BU expansion patches in the maximum observed time domain 
(1975-2020). 

The time points in the set 1975:5:2020 are solved by the application of allocation criteria 𝐴𝐶𝑖 , defined as a 
volume independent normalized factor of expansion 𝑓+ over factor of inertia 𝑓−: 

𝐴𝐶𝑖 =
1 + 𝑓+

1 + 𝑓−
+ 𝜀 

Where  𝜀 is uniformly distributed random variable.  

The time points in the set 2025,2030 are solved by the application of allocation criteria 𝐴𝐶𝑒, defined as a 
volume dependent difference between the expansion factor 𝑓+ and the inertia factor 𝑓−: 

𝐴𝐶𝑒 = 𝑓+ −  𝑓− 

Both 𝐴𝐶𝑖  , 𝐴𝐶𝑒 are bounded in the spatial domain by the condition B defined as the intersection between three 
criteria: 

𝐵 = 𝑥 ∶  𝑓𝑥Φ𝐸𝐿𝑆 > 0 ∩  𝑓𝑥𝐿𝐴𝑁𝐷 > 0.1 ∩   𝑓𝑥𝐻𝑊𝐴𝑌𝑆 < 0.5 

With 𝑓𝑥Φ𝐸𝐿𝑆 the empirical land suitability encoded in the [-1..+1] range, 𝑓𝑥𝐿𝐴𝑁𝐷 the land surface share in the 
sample (Martino Pesaresi and Politis 2022), and  𝑓𝑥𝐻𝑊𝐴𝑌𝑆 is the share of the surface of the sample covered 
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by high ways from OSM data (Martino Pesaresi and Politis 2023). The first criteria is adaptive to the empirical 
conditions observed in the data tile domain of 100x100km, while the two others are universal and valid globally. 

 Spatial pattern generative algorithm 

The spatial pattern generative algorithm (SPGA) is applied for solving the Step3.b of the general workflow 
(3.8.1), regarding the prediction of the 𝑓𝑥𝐵𝑈𝑡∈2025,2030 quantitative grids per data tile of 100x100km in the time 

points 2025, 2030. The SPGA output is used in input together with the Boolean BU domain solved by spatial 
rank-optimization, in the multiplicative model supporting the overall spatial-temporal interpolation process (see 
point 5 of the general workflow 3.8.1). Accordingly, the objective of the SPGA is to fill the whole spatial domain 
with the patterns detected in the 𝑓𝑥𝐵𝑈 quantitative spatial grids. Leaving to the Boolean mask determined by 
the spatial rank-optimization process the task to select which samples generated by the SPGA will be retained 
in the final prediction. 

The SPGA workflow is defined as follows: 

1. Select the salient pattern seeds (SPS) 

2. Determine the influence zone of each SPS 

3. Replicate the pattern inside each specific SPS influence zone 

Step1 is solved by morphological opening (Serra 1983) with a structuring element of 3x3 pixels, that 
corresponds to 300x300m on the ground. The assumption here is that a spatial “pattern” must exhibit at least 
three consecutive non-zero samples in order to be considered as salient. Step2 is solved by the morphological 
watershed segmentation of the Euclidean distance function from the SPS binary set (Vincent and Soille 1991). 
The assumption here is that the decision on which pattern will be replicated is governed by the distance function 
from the seeds. For each sample to be filled, the nearest SPS is taken in to account as example. Step3 is solved 
by a traversal recursive replication spatial operator (Rosenthal et al. 1986).  The assumption here is that salient 
patterns will replicate as-it-is in their influence zone.  

Figure 33 to Figure 40 show the SPGA process for an example of GHSL data taken from the region around the 
city of Milano (Italy).  

Figure 33 shows the continuous 𝑓𝑥𝐵𝑈 surface predicted in 2020 at 100m-res. The 𝑓𝑥𝐵𝑈 functions exhibits 
values in the range 0:10,000 expressing the amount of m2 of predicted built-up surface in the year 2020. Figure 
34 shows the 𝑓𝑥𝐵𝑈 filtered by the morphological opening operator, used to select the salient pattern seeds 
(SPS). Figure 35 shows the influence zones determined by the watershed segmentation on the Euclidean 
distance function from the SPS. Figure 36 shows the output of the pattern replication process, replicating the 
pattern inside each specific influence zone. Figure 37 shows (red) the samples that are selected to change state 
in the future year 2025 according to the rank-optimal spatial allocation of the BU support domain (see 3.8.4), 
vs. the samples already in the BU support domain in 2020 (white). Figure 38 shows the final prediction for the 
𝑓𝑥𝐵𝑈⃛ quantitative grids in 2025 as product of the 𝑓𝑥𝐵𝑈 quantitative grids generated by the pattern replication 
process by the 𝐵𝑈𝑥>0 Boolean support domain predicted for 2025 in the rank-optimal spatial allocation process. 
Figure 39 and Figure 40 show the same logic applied to the prediction of the year 2030. 
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Figure 33 – Continuous 𝑓𝑥𝐵𝑈 surface predicted in 2020 at 100m-res 

 

 

 

Figure 34 – Selection of the salient patterns seeds (SPS) 
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Figure 35 – Influence zones of the SPS 

 

 

 

Figure 36 – Replication of the SPS pattern in the influence zones 
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Figure 37 – BU domain in 2020 (white) and BU domain increase 2025 (red) predicted by the spatial-temporal rank 
optimization process 

 

 

 

Figure 38 – BU continuous surface predicted in 2025 
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Figure 39 – BU domain in 2020 (white) and BU domain increase 2025 (red) predicted by the spatial-temporal rank 
optimization process 

 

 

 

Figure 40 – BU continuous surface predicted in 2030 
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4 Results 

4.1 Ranking of SEGM PHIMAX by strata results 

We examined the architecture of the ensemble of the five best performing models of the binary and continuous 
change detection scheme (Figure 41 - Figure 44). Within the five best performing models, tested in seven strata 
(COMPACT, SPARSE, RES, NRES, IN_PRIOR, OUT_PRIOR, TOTAL), for all four change epochs combined or 
separately, we examined which parameters occurred most often. The parameters examined were related to: the 
stratification (TRAIN_STRATA) and sampling strategy (SAMPLING) used for training set preparation; the training 
data used to support the change decision (DECISION); the strategy used to maximizes the multi-temporal 
change decision on the segment level (PHITEMPORAL); the method and semantics for estimating PHI in the 
change decision (PHITYPE, PHISEMANTIC); and the method for downscaling of change decision to the segment 
geometry (PHIFUN). 

 

Figure 41 - Architecture of five best performing models of binary change detection schema, tested in seven strata 
(COMPACT, SPARSE, RES, NRES, IN_PRIOR, OUT_PRIOR, TOTAL), for all four change epochs (n=140). Bars represent the 

frequency of parameters used in model ensemble architecture. 

For all change epochs combined in the binary change detection schema (Figure 41), the majority of models in 
the selected ensemble was trained using sparse BU samples. Interestingly, examination of model ensemble per 
change epoch showed the models selected for 1990 and 2014 change epoch performed better trained on 
sparse samples, while the models selected for the change epochs 1975 and 2000 performed better using 
compact training data (Figure 42). Equalized random sampling strategy for selecting examples belonging to the 
semantic background had the highest performance for all epochs combined, and for each change epoch 
individually. In most cases method of selecting negative examples in the neighbourhood of the positive samples 
performed the best (EQNEAR) apart from the change epoch 1975, where the EQFULL strategy of sampling 
whole semantic background of valid data was more effective.  

In every case, the interlaced approach, combining various epochs in the maximization of the PHI semantic, had 
the highest performance. PHI_A was the most common PHI type used to support the change decision, apart 
from the change epoch 1990, where the PHI_AB type was selected. In every case, the NBU-BU difference 
semantic (NBU_BU_D) downscaled by the maximal value to a segment level (PHI_FUN) had the highest 
performance. In the investigated model ensemble, the binary change decision was supported by the combination 
of the PHI and prior, combined by “OR” or by “MED” operator defined as, respectively, the point-wise maxima 
and the point-wise median operators on the decision spatial vectors. 
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Figure 42 - Architecture of five best performing models of binary change detection schema, tested in seven strata (COMPACT, 
SPARSE, RES, NRES, IN_PRIOR, OUT_PRIOR, TOTAL), for each change epoch (n=35). Bars represent the frequency of 
parameters used in model ensemble architecture. 

In the continuous change detection schema, the selected ensemble was trained using a composite of the 
compact and sparse BU samples (COMPO strata) (Figure 43). Noteworthy, only for the change epoch 2014 the 
model ensemble performed better using the compact training data (Figure 44). Similarly to the binary change 
detection schema, the EQNEAR equalized random sampling strategy had the highest performance – for every 
case except for change epoch 2000, where in majority all negative samples were used (FULL). 

A different strategy was observed for combining various epochs in maximizing PHI semantic than in the binary 
approach. The interlaced approach had the highest performance in the change epochs 1975 and 2014 that are 
placed at the extrema of the temporal window solved by the method, including the most difficult task of 
detecting thematic changes while changing the supporting image sensors. The independent consideration of 
each epoch collection (BYEPOCH) performed better in the change epochs 1990 and 2000, connoted by more 
homogenous sensor specifications. For all epochs combined, both strategies had similar performance. There 
was no clear advantage in the change decision support strategy, with the PHI_B type performing best across all 
epochs combined. Comparably to the binary approach, the direct NBU-BU difference semantic (NBU_BU_D) had 
the highest performance, with the exception of the 2014 change epoch, when the normalized difference 
(NBU_BU_ND) had a higher rank. Unlike the binary approach, the downscaling of the change decision to the 
segment level (PHI_FUN) was usually done by averaging of the valid PHI data, apart from the change epoch 
2014, when the maximum operator occurred in most model. In every case, the continuous change decision was 
supported by a combination of the PHI and prior, combined by “MED” operator, expressing the point-wise median 
operators on the decision spatial vectors.  
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Figure 43 - Architecture of five best performing models of continuous change detection schema, tested in seven strata 
(COMPACT, SPARSE, RES, NRES, IN_PRIOR, OUT_PRIOR, TOTAL), for all four change epochs (n=140). Bars represent the 

frequency of parameters used in model ensemble architecture. 

  

  

Figure 44 - Architecture of five best performing models of continuous change detection schema, tested in seven strata 
(COMPACT, SPARSE, RES, NRES, IN_PRIOR, OUT_PRIOR, TOTAL), for each change epoch (n=35). Bars represent the frequency 
of parameters used in model ensemble architecture. 

The results of examining the architecture of the ensemble of best-performing models of the binary and 
continuous change detection scheme supports the modelling approach used in the study. Firstly, the selection 
of best-performing models confirms the usefulness of adding supplementary predictions (priors) in the model 
learning phase. Secondly, the equalized random strategy for sampling the semantic background proves to be 
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useful, especially the EQNEAR strategy of sampling negative examples in the close neighbourhood of positive 
samples. 

4.2 Evaluation of the ensemble decisions 

Figure 45, Figure 46, Figure 47, and Figure 48 show the performances of the ensemble decision options for 
solving the change between the anchor point 2018 and the epochs 2014, 2000, 1990, and 1975, respectively. 
Empty squares represent BIN ensembles. Filled round represent CON ensembles. Pattern/colours represent 
different strategies for solving the stratified multiple decision support. The benchmark is the R2022A release, 
represented as a bold disk point. The performances are summarized as J-accuracy of the 100m-res change 
grids (“grid accuracy”) on the horizontal axis, and the change rate error (MAE) on the vertical axis, related to 
both the RURAL and URBAN application domains.  

As can be noticed, many ensemble models may provide better solutions than the benchmark R2022A showing 
there is a high potential for improvement. In particular, BIN ensemble models can reach a lower average URBAN-
RURAL aggregated change rate error, but at the price of a lower grid accuracy as compared to the CON ensemble 
solutions.  In general, and for all the considered change epochs, CON ensemble models show a better joint 
performance of grid accuracy maximization and change rate error minimization. This fact is confirmed by the 
results of the Pareto model selection.  

 

Figure 45 – Ensemble decision options for solving the change 2018 – 2014. Empty squares: BIN ensembles. Filled round: 
CON ensembles. Pattern/colours different strategies for solving the stratified multiple decision support. The benchmark is 
the R2022A release.  
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Figure 46 - Ensemble decision options for solving the change 2018 – 2000. Empty squares: BIN ensembles. Filled round: 
CON ensembles. Pattern/colours different strategies for solving the stratified multiple decision support. The benchmark is 
the R2022A release. 

 

 

 

 

Figure 47 - Ensemble decision options for solving the change 2018 – 1990. Empty squares: BIN ensembles. Filled round: 
CON ensembles. Pattern/colours different strategies for solving the stratified multiple decision support. The benchmark is 
the R2022A release. 
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Figure 48 - Ensemble decision options for solving the change 2018 – 1975. Empty squares: BIN ensembles. Filled round: 
CON ensembles. Pattern/colours different strategies for solving the stratified multiple decision support. The benchmark is 
the R2022A release. 

4.3 Final ensemble selection 

Table 10 shows the final ensemble selection by the PARETO multi-objective optimization. Important findings 
are:  

1. LOGIC: The CON branch outperform the BIN branch in all the change epochs: thus mechanism based 

on linear regression are better than solutions based on hard decisions of on/off. This is true for all 

the change epochs considered. 

2. DECISION-TYPE: The stratified approach (COMPOSITE_BEST_STRATA) always outperform the single-

solution approach (SINGLE_BEST_TOTAL), in all considered change epochs. Thus confirming the 

choice to focus the machine learning on specific challenges as regarding the contextual conditions is 

a good choice (dividet et impera).  

3. NBESTMODEL: The best number of supporting models for each stratum to be included in the 

ensemble decision is not constant across predicted time of changes. As general tendency it seems 

the optimal number of supporting models is grossly proportional to the time gap to be solved. This 

may be explained by the fact that classification uncertainty increases by increasing time gap because 

of decreasing quality of the supporting imagery, thus the inclusion of a larger number of best models 

stabilize the results and increases robustness of the predictions. 

4. SUPPORT: The best approach for setting the support for the regression coefficients or other 

inferential parameters is to rely on the parameters collected during the model calibration assuming 

them as constant across the various data tiles solving the global data. This is the “CONST” option as 

opposed to the “ADAPT” option that was tested as well, including adaptation of the parameters, 

based on the observation of the statistical distribution of priors in the specific data tile. In the CONST 

option the parameter tested in the Pareto optimization is a function of the mean and standard 

deviation of the best parameters discovered during the model calibration. Interestingly, the winning 

parameters have a standard deviation from the average that is decreasing by increasing the time 

gap of the predicted change.  

5. FINALDECISION: testing different approaches for composing the decisions collected from different 

strata, various number of supporting models each. The winning approach is to make the sensitivity to 

change inverse proportional to temporal window to be solved. In short-term predictions better to rely 

on maximal change mechanism (2018-2014), becoming an average (2018-2000), then a 0.1 

quantile (2018-1990) and finally a more conservative 0.4 quantile in the 2018-1975 prediction.  
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6. POSTPROECSSING: testing which approach was preferable for gap filling: interpolating vs. injecting 

the priors (“HYBRID” design) in an inclusive vs. and exclusive way, respectively taking in to account 

interpolated values or disregarding them and inject just the prior predictions. The HYBRIDEXCLUSIVE 

approach was considered preferable in the Pareto optimization process.  

 

Figure 49 shows the performance of tested model design during the multi-objective optimization, as regarding 
the composed three criteria in the Utopia accuracy metric.  

Table 11 shows the comparison of the performances expected from the ensemble models selected by the 
Pareto optimization vs. the benchmark R2022A, relatively to the four change epochs 1975, 1990, 2000, and 
2014. It is worth noting the general increase of performances both in terms of decrease of the MAE of the 
predicted BU change grids and increased realistic aggregated change rates, with a off change rate gain closer 
to one. In particular, it is important to notice the improvement related to the predicted change in the period 
2014-2018, connoted by a short time interval (little change information) and a change of sensor from Landsat 
to S2 (large background noise), thus expressing the worst case as signal-to-noise ratio conditions. In the RURAL 
application domain the new ensemble model is largely reducing the MAE of the predicted BU surface change at 
the 100m grid cell (40 m2 vs. 239 m2 of the benchmark). Even more importantly, the new ensemble model 
produces an aggregated change rate more realistic, then more suitable to be used in input of policy indicators. 
The off change rate gain of the new ensemble solution is estimated as 0.951 (slighly underestimatig change), 
while the benchmark was 4.917 (largely overestimatig change). Consequently, there is an empricial indication 
that the the new model development significantly overperforms R2022A benchmark model. 

Table 10 – Final Ensemble decision model design selected by the PARETO multi-objective optimization. Row descriptions 
listed in the model design column corresponds to the terms used in the model implementation. 

Model design 1975 1990 2000 2014 
LOGIC (BIN/CON) CON CON CON CON 
DECISION-TYPE COMPOSITE_BEST_ST

RATA 
COMPOSITE_BEST_STRATA COMPOSITE_BEST_STRATA COMPOSITE_BEST_STRATA 

NBESTMODEL 5 3 4 1 
SUPPORT CONST_3_AVGBEST CONST_2_AVGBEST_m05

STD 
CONST_1_AVGBEST_m10
STD 

CONST_1_AVGBEST_m10
STD 

FINALDECISION COMPOSITE_Q4 COMPOSITE_Q1 COMPOSITE_MEAN COMPOSITE_MAX 
POSTPROCESSING HYBRIDEXCLUSIVE HYBRIDEXCLUSIVE HYBRIDEXCLUSIVE HYBRIDEXCLUSIVE 

 

 

  

  

Figure 49 – Distance of the composite of the Ruzicka distance and of the MAE of the change rate error in RURAL and URBAN 
domain to the optimal (Utopia) solution, for the 20-best ensemble models ranked by the distance, by each change epoch 
1975, 1990, 2000 and 2014. 
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Table 11 – Comparison of the performances expected from the ensemble models selected by the Pareto optimization vs. 
the benchmark R2022A, for the four change epochs 1975, 1990, 2000, and 2014. 

E
P
O

C
H

 

M
O

D
E
L
_
ID

 

M
O

D
E
L
 

M
A

E
_
A

L
L
 

M
A

E
_
U

R
B

A
N

 

M
A

E
_
R

U
R

A
L
 

O
F
F
C

H
A

N
G

E
R

A
T
E

_
g
a
in

_
A

L
L
 

O
F
F
C

H
A

N
G

E
R

A
T
E

_
g
a
in

_
U

R
B

A
N

 

O
F
F
C

H
A

N
G

E
R

A
T
E

_
g
a
in

_
R

U
R

A
L
 

1975 3883 PARETO_ENSEMBLE_selected 483.54 775.05 393.29 0.962 0.961 0.986 

1975 1 BENCHMARK_R2022A 640.19 721.09 600.62 1.029 0.751 1.187 

1990 3211 PARETO_ENSEMBLE_selected 348.97 538.96 293.21 1.013 1.020 1.041 

1990 1 BENCHMARK_R2022A 615.72 619.17 616.17 1.359 0.954 1.574 

2000 3475 PARETO_ENSEMBLE_selected 235.80 348.51 205.43 0.959 0.920 1.015 

2000 1 BENCHMARK_R2022A 544.57 495.19 570.84 1.637 1.057 1.918 

2014 2536 PARETO_ENSEMBLE_selected 44.90 68.24 40.11 0.893 0.786 0.951 

2014 1 BENCHMARK_R2022A 206.59 126.06 239.27 3.750 1.293 4.917 

         

total  PARETO_ENSEMBLE_selected 278.30 432.69 233.01 0.96 0.92 1.00 

total  BENCHMARK_R2022A 501.77 490.38 506.72 1.94 1.01 2.40 

4.4 Post-processing options 

As already introduced, the prediction of changes in the 1975, 1990, 2000, and 2014 epochs vs. the 2018 anchor 
point are made by independent ensemble models. As corollary by construction this fact means that i) each 
sample x at any epoch will have less or equal BU surface than the 2018, and ii) a sample x at the subsequent 
time t+1 will not have a predicted BU surface necessarily greater or equal than in the precedent time t (Figure 
50). Thus in principle the new ensemble model could be used to model both the increase or the decrease of the 
BU surface from the past to the recent epochs, being the decrease induced for example by the phenomena of 
demolishing of built-up structures and re-set the use of the area as parks or other non-built-up uses.  

 

Figure 50 – Independent temporal estimates of the epochs t and t+1, precedent of the anchor point 2018  

In practice, the potential claim of the model to predict the decrease of built-up surfaces from past to recent 
epochs cannot be empirical tested with the available MTBF, that unfortunately are assuming a growing built-
up surface by construction of the supporting vector cartographic data. Moreover, the potentially predicted 
decrease of BU surface quantity is significantly smaller than the predicted increase of BU surface, thus more 
exposed to low signal-to-noise ratio generating less reliability of these estimates (Table 12).   
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Epoch change Average t->t+1 BU stable Average t->t+1 BU 
increase year  

Average t->t+1 BU 
decrease year  

1975-1990 200.73 m2 25.28 m2 -9.21 m2 

1990-2000 962.52 m2 25.63 m2 -3.79 m2 

2000-2014 1 331.80 m2 20.31 m2 -4.64 m2 

2014-2018 1 388.61 m2 18.80 m2 n.a. 

Table 12 – Empirical assessment of the predicted average yearly increase and decrease of BU surface from past to recent 
epochs in the data tiles included in the test.  

Taking in to account the above known constraints, few post-processing options have been evaluated in order to 
consolidate the ensemble model predictions. In particular, three “temporal constraint” options were evaluated i) 
“Free” or not constrained temporal output, ii) “Backward constraint” imposing at each sample x less or equal 
predicted BU surface from recent to past epochs, and iii) “Forward constraint” imposing at each sample x more 
or equal predicted BU surface from past to recent epochs. Additionally, an “acceleration of change” option (A, 
B) was tested by imposition of the maximal change rate as inferred by the ensemble model or deducible from 
the available priors.   

4.5 Basic quantitative characteristics of the predicted grids  

Figure 51 shows the absolute BU surfaces estimates in the epochs 1975, 1990, 2000, 2014, and 2018, in all 
the data tile considered. The new ensemble model, in any of the post-processing options, produces a temporal 
pattern of the BU surfaces that is closer to the REF observed data from the MTBF. Consequently, can be claimed 
that the post-processing options are expected to produce negligible effects in terms of absolute amount of 
predicted total BU surfaces. To be noticed also the evident acceleration of change reported by the benchmark 
R2022A (dash red line, Boolean change map sum), largely overestimating the change rates in the most recent 
years.  

Figure 52 shows the BU surface estimates relative to the 1975, by the different post-processing options and 
the reference observed data. All the ‘A’ post-processing options are substantially predicting the observed 
temporal pattern, while the ‘B’ post-processing options show an evident acceleration of changes vs. the 
observed temporal pattern, thus they are rejected.  

Figure 53 shows the error (MAE) of the prediction of the relative change rates to 1975, in all the considered 
epochs (1975, 1990, 2000, 2014, and 2018), for the ensemble model in the ‘A’ post-processing path and 
various already existing data/model, including the benchmark R2022A. To be noticed that the three ensemble 
model options “Free_A”, “BackwardConstraint_A”, and “ForwardConstraint_A” have substantially the same error 
rate, that is the best as compared to the other already existing data/models, including the benchmark R2022A 
that shows the worst performance. The least ensemble model error option is the “Free_A” as it was expected 
being the one winning the Pareto optimization process. The best option with a form of temporal constraint is 
the “BackwardConstraint_A”. 

Figure 54 shows the J-accuracy (Ruzicka similarity) of the BU surface estimates in the 100m-cell samples of 
the five considered epochs. Comparison of the previous model benchmark R2022A (binary change map version), 
the new ensemble model development, and all the other already available models. All the new model ensample 
options show an accuracy greater than three times of all the other alternatives, in all the epochs. The 
“BackwardConstraint_A” shows an acceptable compromise in terms of accuracy vs. the analogue “B” that scores 
slightly better as grid cell accuracy but accelerates the aggregated change rate (Figure 52). 

Figure 55 shows the error (MAE) of the BU surface estimates in the 100m-cell samples of the five considered 
epochs. Comparison of the previous model benchmark R2022A (binary change map version), the new ensemble 
model development, and all the other already available models. The new ensemble model leads to a noticeable 
lower error of the 100m-cell estimates that is substantially constant across the various epochs.  

Finally, Table 13 and Table 14 show the ranking of the prediction/models by the average grid accuracy and the 
average grid error, respectively, in all the epochs stratified by the degree of urbanization (SMOD) level 2. The 
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“BackwardConstraint_A” ensemble model option is the most accurate and the least error, thus is the one 
selected for the production purposes. 

 

Figure 51 - Absolute BU surfaces estimates in the epochs 1975, 1990, 2000, 2014, and 2018.   

 

 

 

Figure 52 – BU surface estimates relative to the 1975, by the different post-processing options and the reference observed 
data  
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Figure 53 – Error (MAE) of the prediction of the relative change rates to 1975, in all the considered epochs (1975, 1990, 
2000, 2014, and 2018) 

 

 

 

 

Figure 54 – J-Accuracy (Ruzicka similarity) of the BU surface estimates in the 100m-cell samples of the five considered 
epochs. Comparison of the previous model benchmark R2022A, the new ensemble model development, and all the other 
already available models  
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Figure 55 – Error (MAE) of the BU surface estimates in the 100m-cell samples of the five considered epochs. Comparison 
of the previous model benchmark R2022A, the new ensemble model development, and all the other already available models  

 

Table 13 – Ranking of the prediction/models by the average grid accuracy (Ruzicka similarity) in all the epochs, stratified by 
the degree of urbanization (SMOD) level 2. 

Prediction / model Rural area (1) Towns & semi-

dense area (2) 

City (3) Total 

GHS_R2022B_BackwardConstraint_A 0.340 0.399 0.427 0.374 

GHS_R2022B_Free_A 0.340 0.399 0.427 0.374 

GHS_R2022B_ForwardConstraint_A 0.339 0.399 0.427 03.74 

GISD30 0.140 0.166 0.161 0.153 

GAIA 0.109 0.187 0.171 0.149 

GAUD 0.122 0.147 0.140 0.135 

GISA 0.107 0.151 0.150 0.130 

GISA2 0.107 0.148 0.145 0.128 

GHS_B_p2019 0.109 0.134 0.135 0.122 

WSF_EVO 0.101 0.122 0.134 0.113 

UCOMPOSITE_B 0.089 0.131 0.140 0.112 

GHS_B_P2016 0.094 0.126 0.127 0.111 

UCOMPOSITE_C 0.082 0.107 0.119 0.096 

UCOMPOSITE_D 0.081 0.108 0.117 0.096 

UCOMPOSITE_A 0.078 0.131 0.114 0.091 

GHS_R2022A 0.062 0.096 0.115 0.082 

All 0.148 0.188 0.197 0.170 
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Table 14 – Ranking of the prediction/models by the average grid error in all the epochs, stratified by the degree of 
urbanization (SMOD) level 2. 

Prediction / model Rural area (1) Towns & semi-

dense area (2) 

City (3) Total 

GHS_R2022B_BackwardConstraint_A 139.96 529.63 882.91 378.44 

GHS_R2022B_Free_A 140.12 529.81 883.00 378.60 

GHS_R2022B_ForwardConstraint_A 140.28 529.98 883.08 378.76 

GISD30 378.87 1 921.69 3 629.80 1 351.20 

GAIA 333.46 1 946.50 3 917.88 1 366.91 

GAUD 360.84 1 930.79 3 932.59 1 374.24 

GISA 344.79 2 040.64 4 103.88 1 430.89 

GISA2 635.94 2 157.79 3 459.08 1 560.18 

GHS_B_p2019 480.10 2 296.46 4 252.54 1 619.84 

WSF_EVO 427.73 2 351.55 4 629.09 1 653.60 

UCOMPOSITE_B 462.82 2 367.50 4 522.97 1 667.45 

GHS_B_P2016 717.99 2 655.61 4 244.10 1 888.53 

UCOMPOSITE_C 768.99 3 010.85 4 860.33 2 124.37 

UCOMPOSITE_D 846.77 3 249.73 5 247.74 2 300.97 

UCOMPOSITE_A 920.41 6 447.13 5 517.07 2 446.69 

GHS_R2022A 1 120.53 3 678.67 5 449.36 2 636.24 

All 518.06 2 144.89 3 707.15 1 521.62 

4.6 Visual inspection of the ensemble model predictions for observed epochs  

The ensemble model predictions of BU surfaces in the different observed epochs (1975, 1990, 2000, 2014, 
2018) at 100 m-res were visually inspected in order to i) detect unexpected qualitative anomalies not evident 
in the quantitative error assessment as for example data tiling effects, spatial-temporal biased patterns induced 
by noise or gaps in the supporting historical satellite data, ii) check the behaviour of the ensemble model 
predictions in the off-the-sample and eccentric geographical regions not represented by the MTBF test data. 
They were selected by prioritizing the different geographical background and settlement patterns as respect 
the tested regions, thus maximizing the expected difficulty of the ensemble model transfer, potentially leading 
to the worst-case error scenarios.  

The MT ensemble model predictions at 100 m-res are continuous in the range 0-10 000, expressing the amount 
of predicted BU square meter surface in each cell, in each epoch. It is represented here as a RGB composite 
image by associating to the predicted BU surface of the 2018, 2000, and 1975 epochs, respectively, to the RGB 
colour channels. In this visual representation, grey indicates a stable BU component since 1975, yellow a BU 
component produced 1975-2000 time window, and red the BU component produced in the 2000-2018 time 
window. Figure 56, Figure 57, and Figure 58 are extracted from the MTBF test domain, thus in the comfort zone 
of the ensemble model automatic inferential mechanism. Figure 59, Figure 60, Figure 61, and Figure 62 are 
extracted form data tiles outside the MTBF test domain and far from the comfort zone of the ensemble model 
automatic inferential mechanism. In particular, Figure 59 shows the case of a complete absence of the Landsat 
imagery supporting the 1975 epoch. In the previous R2019 and R2016 GHSL releases this case was solved by 
assuming constant (no change) pattern from recent to past epochs, because no image data evidences were 
supporting the off-change inference. In the current model development, the zones where no Landsat image 
data are available are solved by the injection of the best composite of available priors, which are used as 
semantic proxies. Figure 60, Figure 61, and Figure 62 show the case of rural scattered regions in Africa and 
Asia that were discovered in the S2 image data of the epoch 2018, and are mostly in the omission domain of 
the available MT priors (including the R2019 and R2016 precedent GHSL releases), thus forcing the model to 
transfer the inference to an unknown environment. In absence of MTBF allowing quantitative error assessment, 
the visual inspection shows a plausible spatial-temporal evolution pattern in those cases. 
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Figure 56 – Ensemble model predictions for the city of Madrid, Spain. RGB composite R:2018, G:2000, B:1975, grey indicates 
a stable BU component since 1975, linear histogram stretching min:0, max:10 000 m2 of BU surface.  

 

Figure 57 - Ensemble model predictions for the region N-E of the city of Amsterdam, Netherland. RGB composite R:2018, 
G:2000, B:1975, grey indicates a stable BU component since 1975, linear histogram stretching min:0, max:10 000 m2 of BU 
surface.  
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Figure 58 - Ensemble model predictions for the city of Atlanta, Unites States of America. RGB composite R:2018, G:2000, 
B:1975, grey indicates a stable BU component since 1975, linear histogram stretching min:0, max:10000 m2 of BU surface. 

 

 

Figure 59 - Ensemble model predictions for the city of Bogotá, Colombia. RGB composite R:2018, G:2000, B:1975, grey 
indicates a stable BU component since 1975, linear histogram stretching min:0, max:10000 m2 of BU surface. 
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Figure 60 - Ensemble model predictions for the region N of Nairobi, Kenya. RGB composite R:2018, G:2000, B:1975, grey 
indicates a stable BU component since 1975, linear histogram stretching min:0, max:10 000 m2 of BU surface 

 

 

Figure 61 - Ensemble model predictions for the region N of Shanghai, China. RGB composite R:2018, G:2000, B:1975, grey 
indicates a stable BU component since 1975, linear histogram stretching min:0, max:10 000 m2 of BU surface 
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Figure 62 - Ensemble model predictions for the region S-W of Kolkata, India. RGB composite R:2018, G:2000, B:1975, grey 
indicates a stable BU component since 1975, linear histogram stretching min:0, max:10 000 m2 of BU surface 
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4.7 Visualisation of the ensemble model predictions interpolation  

Interpolation and extrapolation of the ensemble model predictions into 5-year interval layers is presented on 
Figure 63. In this visual representation, grey indicates a stable BU component since 1975, and colours from red 
to magenta denote BU components produced for 1980 – 2030 5-year intervals. 

Validation of the multi-temporal model predictions will be delivered in dedicated peer-reviewed publications. 

 

Figure 63 – Interpolation layers of the ensemble model predictions for the region Cairo, Egypt. Colours represent the presence 
of built-up surface in each interpolated year, with grey colour marking indicating a stable BU component since 1975. 
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5 Conclusions 

The long-term spatial distributions of global built-up density and of resident people produced by the GHSL 
provide baseline data for monitoring the progress towards achieving the SDG’s. In particular, spatial policy 
indicators monitoring SDG 11 on sustainable cities and communities require reliable information about the 
increase of built-up surface in-between the observed epochs. Therefore, a new approach for solving the 
prediction of the multi-temporal change of built-up surfaces and volumes in the GHSL data ecosystem from 
the anchor point 2018 and the epochs 2014, 2000, 1990, and 1975 was developed.  

The new approach relies on stratified multiple-quantization associative rule learning applied to EO data, object-
oriented image processing, and multiple decision support ensemble modelling. For each predicted change epoch 
independently, the final ensemble model was selected trough Pareto multiple objective optimization, minimizing 
the error of the BU surface change maps and the errors in aggregated BU surface change rates in the URBAN, 
RURAL application domain strata. Moreover, some post-processing options have been discussed and evaluated. 

According to the collected empirical records in the available multi-temporal building footprints reference data, 
the change predictions of the new ensemble model are substantially more accurate than the ones claimed in 
the GHS-BU R2022A, and in any other prior alternative or combination of priors available in the literature. In 
particular, the expected error (MAE) of the predicted BU change grids by the new ensemble model in all the 
considered epochs is 432 m2 and 233 m2, respectively for the URBAN and RURAL domains, vs. the 490 m2 and 
506 m2, respectively, for the benchmark R2022A. Thus, an average decrease of half of the error in the prediction 
of BU surface changes in rural domain is expected, as compared to the R2022A benchmark in all the considered 
epochs. The decrease of the error is even more important in the prediction of the change 2018-2014 that is 
the most challenging case involving the change of the supporting EO sensors from Landsat TM (30m-res) to 
Sentinel2 MSI (10m-res). In this case, the estimated error of the new ensemble model is 68 m2and 40 m2, 
respectively, in the URBAN and RURAL domains, vs. the benchmark R2022A scoring 126 m2 and 239 m2, 
correspondingly. This means that in the new ensemble model predictions the expected error in this challenging 
case will decrease of a factor close to 2 in the urban domain and decrease of a factor close to 6 in rural domain.  
Coherently, in the change 2018-2014 the aggregated change rate gain factor of the new ensemble model in 
the rural domain is close to 1, vs. the benchmark R2022A that is 4.9, thus largely overestimating the change 
rate in rural application domain. 

In order to understand the value added of the research and development achievements discussed, it is worth 
noting that the new multiple-sensor (S2-Landsat) built-up surface change detection challenge is performed in 
the same GHSL scarce and reduced data environment as in the previous GHSL data releases. This implies that 
the proposed object-oriented, ensemble-decision framework contribute to the robustness and stability of the 
presented model. Such solution, capable of handling scarce and spatially and temporally varying multiple-sensor 
input data facilitates continuity and repeatability of the modelling of the global multi-temporal built-up surfaces 
and volumes. 
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List of abbreviations and definitions  

AGBH Average of the Gross Building Height 

ANBH Average of the Net Building Height 

BIN binary change detection schema 

BU built-up class 

BUDYN spatial estimation of the expansion potential of the built-up domain in time  

BUFRAC sub-pixel built-up surface prediction made at 10m-resolution from S2 image data composite 

CON continuous change detection schema 

DEM Digital Earth Model 

ELS Empirical Land Suitability layer 

EO Earth Observation 

GAIA “Annual maps of global artificial impervious area (GAIA) between 1985 and 2018” (Gong et al., 2020) 

GAUD “High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015” (Liu et al., 
2020) 

GEE Google Earth Engine  

GHSL Global Human Settlement Layer 

GHS_B_P2016 “Operating procedure for the production of the Global Human Settlement Layer from Landsat 
data of the epochs 1975, 1990, 2000, and 2014” (Pesaresi, Ehrlich, et al., 2016) 

GHS_B_P2019 “Automated global delineation of human settlements from 40 years of Landsat satellite data 
archives” (Corbane et al., 2019) 

GISA “30 m global impervious surface area dynamics and urban expansion pattern observed by Landsat 
satellites: From 1972 to 2019”  (Huang et al., 2021) 

GISA2 “Toward accurate mapping of 30-m time-series global impervious surface area (GISA2.0)” (Huang et 
al., 2022) 

GISCO the Geographic Information System of the Commission 

GISD30 “Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat 
imagery on the Google Earth Engine platform” (Zhang et al., 2022) 

JRC Joint Research Centre 

MT multi-temporal 

MTBF multi-temporal building footprints  

MTBF33 MTBF33 project (Uhl & Leyk, 2022) 

MWD The Mollweide projection ESRI:54009 

NBU non built-up class 

NRES non residential built-up class 

PHI decision probability in SML method 

RES residential built-up class 

RURAL URBAN application domains, as set by the GHS-SMOD R2022A   

S2 Sentinel-2 

SML symbolic machine learning  

UCOMPO union of the priors 
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URBAN URBAN application domains, as set by the GHS-SMOD R2022A   

VOL built-up volume 

WSF_EVO “World Settlement Footprint Evolution 1985-2015” (Marconcini et al., 2021) 
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