
R E V I EW

Global hydrological reanalyses: The value of river discharge
information for world-wide downstream applications – The
example of the Global Flood Awareness System GloFAS

Christel Prudhomme1 | Ervin Zs�otér1 | Gwyneth Matthews1 |

Angelique Melet2 | Stefania Grimaldi3 | Hao Zuo1 |

Eleanor Hansford1 | Shaun Harrigan1 | Cinzia Mazzetti1 |

Eric de Boisseson1 | Peter Salamon3 | Gilles Garric2

1European Centre for Medium Range Weather Forecasts, Reading, UK
2Mercator Ocean International, Toulouse, France
3European Commission Directorate-General Joint Research Centre, Ispra, Italy

Correspondence
Christel Prudhomme, European Centre
for Medium Range Weather Forecasts,
Reading, UK.
Email: christel.prudhomme@ecmwf.int

Funding information
European Commission, Grant/Award
Number: 941462-IPR-2021

Abstract

Global hydrological reanalyses are modelled datasets providing information on

river discharge evolution everywhere in the world. With multi-decadal daily

timeseries, they provide long-term context to identify extreme hydrological

events such as floods and droughts. By covering the majority of the world's

land masses, they can fill the many gaps in river discharge in-situ observational

data, especially in the global South. These gaps impede knowledge of both

hydrological status and future evolution and hamper the development of reli-

able early warning systems for hydrological-related disaster reduction. River

discharge is a natural integrator of the water cycle over land. Global hydrologi-

cal reanalysis datasets offer an understanding of its spatio-temporal variability

and are therefore critical for addressing the water–energy–food–environment

nexus. This paper describes how global hydrological reanalyses can fill the lack

of ground measurements by using earth system or hydrological models to pro-

vide river discharge time series. Following an inventory of alternative sources

of river discharge datasets, reviewing their advantages and limitations, the

paper introduces the Copernicus Emergency Management Service (CEMS)

Global Flood Awareness System (GloFAS) modelling chain and its reanalysis

dataset as an example of a global hydrological reanalysis dataset. It then

reviews examples of downstream applications for global hydrological reana-

lyses, including monitoring of land water resources and ocean dynamics,

understanding large-scale hydrological extreme fluctuations, early warning sys-

tems, earth system model diagnostics and the calibration and training of
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models, with examples from three Copernicus Services (Emergency Manage-

ment, Marine and Climate Change).

KEYWORD S

climate services, Copernicus, global hydrological reanalysis, hydrological extremes, large-
scale hydrological modelling, observational gaps

1 | INTRODUCTION

Freshwater, and water in rivers especially, is an essential
resource critical for the well-being of the environment
and humans, but its unequal distribution across the
world and its large temporal variability make it the
source of some of the most devastating natural disasters.
Between 2001 and 2020, floods and droughts have
affected nearly 65 and 80 million people per year, respec-
tively, with on average 163 flood events per year recorded
in the Emergency Event Database (CRED, 2022). In 2021,
economic losses attributed to natural disasters were esti-
mated to exceed 250 Billion USD world-wide, with floods
alone causing $70 billion damage. Losses from the July
event in Europe were estimated at $43 billion (Kramer &
Ware, 2022), providing further evidence that society is
not yet resilient to hydrological extremes. According to
the Intergovernmental Panel on Climate Change, there is
already evidence that global warming impacts on hydro-
logical extremes (Arias et al., 2021). Moreover, flood dam-
ages in Europe are expected to exceed €12.5 billion a year
under a scenario of 2�C above pre-industrial level if no
adaptation measures are in place (Ciscar et al., 2018).

Robust detection and attribution of non-stationarity
to support the IPCC are dependent on the availability of
good quality hydrological time series data that are as long
and complete as possible (Slater et al., 2021). Such hydro-
logical datasets are also fundamental to better understand
the water–energy–food–ecosystem nexus—including the
water cycle economic and societal links; adapt to future
challenges—for example, associated with climate change
and population growth and deliver the European Green
Deal for a climate-neutral continent. When accessible
reliably and in near-real time, hydrological monitoring
and forecasting information, such as that delivered by
early warning systems, are also effective to: (i) help
achieve the goals of the Sendai framework for Disaster
Risk Reduction of the United Nation (United Nation,
2015), (ii) tackle water-related UN Sustainable Develop-
ment Goals, especially SDG6 and associated goals
(UN Water, 2016) and (iii) support improved water man-
agement (Dixon et al., 2020) and reduction of hydrologi-
cal extreme risks such as flooding (Alfieri et al., 2018).
Already, initiatives such as the Hydro SOS programme of

the World Meteorological Organisation have emerged,
aiming explicitly to monitor hydrological status at the
global scale (Jenkins et al., 2020) to address those world
challenges.

However, quantifying the global hydrological status is
challenging owing to the large gaps (both in time and
space) in hydrological observational data in major global
catalogues such as the Global Runoff Data Centre
(GRDC)—the international archive of historical river dis-
charge monthly and daily data records collected on
behalf of the WMO (see Figure 1). Further adding to the
challenge is the declining availability of gauged river dis-
charge data across the world (Lavers et al., 2019). This
inhibits the ability to make timely decisions for effective
water management and mitigations actions, as these
require the evolution of the hydrological status to be
monitored close to real-time.

This paper presents how global daily hydrological
river discharge ‘reanalysis’ (or simulations) time series
can address the in-situ data availability challenge, with a
particular focus on the Copernicus Emergency Manage-
ment Service's (CEMS) Global Flood Awareness System
(GloFAS) hydrological reanalysis (Harrigan et al., 2020),
and presents examples of global hydrological reanalysis
applications worldwide including several from different
Copernicus Services.

2 | CURRENT CHALLENGES IN
GLOBAL HYDROLOGICAL DATA

2.1 | Remote sensing and in-situ river
discharge observations

The many gaps in shared river discharge observation net-
works undoubtedly limit the creation of daily hydrologi-
cal time series across the world. Innovations in sensor
technology, especially low-cost techniques (Acharya
et al., 2021), the development of earth observation (from
satellite or aircraft) and the modern cyber-infrastructure
offered by cloud computing have opened multiple alter-
natives to costly traditional in-situ river discharge mea-
surements, an opportunity recognized and supported by
WMO (Dixon et al., 2020). Several initiatives have
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received large investments for generalizing the use of
Earth Observations (EO) including the EUMETSAT Sat-
ellite Application Facility on Support to Operational
Hydrology and Water Management H-SAF (https://hsaf.
meteoam.it/About) in Europe and the Office of satellite
and product operation from NOAA (https://www.ospo.
noaa.gov/Products/land/surface.html) in the
United States of America. But despite promising local
applications (e.g., derivation of river discharge time series
from multi-spectral sensors by Tarpanelli et al., 2020),
there is to date no operational EO-derived global river
discharge product, with EO data still focusing on water
budget fluxes and storage variables (e.g., precipitation,
evapotranspiration, soil moisture or snow cover), whilst
inland water bodies measurements, including that of sur-
face water storage and river discharge, remain poorly
explored (Durand et al., 2021). Next-generation satellite
missions, such as the Surface Water and Ocean Topogra-
phy radar altimetry (SWOT; Biancamaria et al., 2016) or
the NASA-ISRO SAR mission (NISAR), offer ground-
breaking opportunities for inland water measurements,
but they also include technical challenges
(Blumenfeld, 2017) and much testing and verification are
likely to be necessary after their launch (SWOT was
launched in December 2022) before they can be fully
used operationally. Finally, issues of spatial resolution
and imagery, orbital frequency and gaps in the signal
from clouds or vegetation interference (Fassoni-Andrade

et al., 2021) make it difficult for EO to provide truly con-
tinuous coverage in time and space globally.

In-situ observational river discharge datasets, how-
ever, remain unique reference information sources, criti-
cal for the calibration of hydrological models and useful
for evaluating model performance. Sources like the
GRDC provide monthly to daily time series of river dis-
charge (and associated metadata including catchment
drainage area) collected by national hydrological and
hydro-meteorological services and shared with the inter-
national community through a unique data catalogue.
More recently, community effort such as Caravan
(Kratzert et al., 2023) has emerged to collect, clean-up
and standardize meteorological, hydrological and
associated metadata datasets, resulting in freely available
open-source dataset packages to facilitate large-scale
hydrological research.

2.2 | Modelled river discharge datasets

To complement the existing gaps of in-situ observational
river discharge data, traditional physically based hydro-
logical models or machine learning algorithms combin-
ing ground observation and atmospheric datasets have
been developed to generate river discharge datasets with
global coverage (Ghiggi et al., 2021; Lin et al., 2019).
Land surface or earth system models (ESM) (coupled

FIGURE 1 Location of the gauged river discharge monitoring network of the Global Runoff Data Centre (GRDC) catalogue, coloured

according to the last year of available record. Source: GRDC, https://www.bafg.de/GRDC/EN/Home/homepage_node.html, accessed

15 December 2023.
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with routing modules such as CaMaFlood [Yamazaki
et al., 2011] or mRM [Thober et al., 2019]; see,
e.g., Tijerina et al., 2021 for review) or traditional large-
scale hydrological models (e.g., Open Source OS LIS-
FLOOD, de Roo et al., 2000) have increasingly been used
as tools to simulate river discharge time series over conti-
nental or global domains (see, e.g., Sood and Smakhtin
(2015) for a review of global hydrological models, or Bier-
kens (2015) for analysis of the evolution of global hydro-
logical modelling). Common applications generally
include simulation of the past for trend analysis, risk
assessment or resource quantification, delivery to hydro-
climate services such as early warning systems and
assessment of the long-term effect of climatic changes or
scenario testing (Bierkens, 2015). By construction,
large-scale hydrological models aim for resolving the
water balance and generally close the water budget when
used off-line, avoiding some of the known artefacts due
to data assimilation (Chevallier et al., 2017).

However, whilst modelling is a credible alternative
to in-situ measurements and EO river discharge prod-
ucts, modelling applications could be limited by the
quality of their outputs, attributed to the difficulty in
representing key hydrological processes (e.g., see Clark
et al., 2015 for ESM) and in calibrating their parameters
(Bierkens, 2015). Another challenge associated with
modelled river-discharge data is the availability of good
quality climate-weather related variables to drive large-
scale models (Kingston et al., 2020) at relevant spatial
and temporal resolutions. Furthermore, these variables
also need to be as consistent as possible in space and
time globally so that simulations of different hydro-
climatic regions and periods can be compared.

To ensure temporal and spatial continuity and consis-
tency of weather data to generate river discharge time
series, ground measurements need to be shared, pro-
cessed and interpolated at the required resolution. But
despite global initiatives such as the WMO Integrated
Global Observing System (WIGOS) and its metadata
repository (OSCAR), there are no universally recognized
global surface variable time series datasets used for
hydrological modelling. Additionally, the spatial scale,
temporal frequency, limited record length, potential
water-balance inconsistency and seasonal and geographi-
cal biases in remotely sensed water cycle variables make
them not always suitable for regular global applications
such as daily simulation of river discharge, limiting the
uptake of EO-weather related products for operational
hydrological applications (Beck, Vergopolan, et al., 2017;
Dembélé et al., 2020). An alternative to observation-based
forcing data exists in weather reanalyses datasets. Origi-
nally developed to provide consistent (in time and space)
information on a range of climate, ocean and land

variables, they can be used to force global land surface or
hydrological models to generate hydrological reanalysis
datasets.

Reanalyses are created using a numerical prediction
model and a data assimilation scheme to generate
gridded data of the earth system. Whilst they are not
without biases (Beck, Vergopolan, et al., 2017; Lavers
et al., 2022), reanalyses are sometimes preferred to pure
EO data due to their record length (typically covering
periods from 1979 when satellite data emerged), and con-
tinuous and spatially consistent global features. This pref-
erence in reanalyses is shown by the recent increase in
their uptake in earth system applications (Baatz
et al., 2021) and the efforts to facilitate their
use (CREATE project; Potter et al., 2018). Note that the
use of land data assimilation (typically soil moisture and
snow extent) in earth system reanalysis could introduce
spurious trends in derived variables such as runoff and
snow melt, in turn propagating to river discharge (Zs�otér,
Cloke, et al., 2020). Such datasets are therefore less suit-
able for stationarity assessment compared to those gener-
ated by forcing off-line hydrological models with weather
data only, although the presence of precipitation biases
and trends in the tropics (see, e.g., Lavers et al., 2022)
could also impact the quality of river discharge time
series.

3 | THE CEMS GloFAS
HYDROLOGICAL REANALYSIS

A widely used example of a near real-time hydrological
reanalysis dataset is GloFAS, a freely available global
dataset of daily river discharge time series. It is produced
operationally by the CEMS as part of the GloFAS Early
Warning System for floods, which was originally devel-
oped jointly by the European Commission's Joint
Research Centre (JRC) and the European Centre for
Medium-Range Weather Forecasts (ECMWF). As CEMS
GloFAS is an operational service, it benefits from regular
upgrades, with major changes in the hydrological model-
ling chain introduced as ‘cycle upgrades’ that are associ-
ated with a strict version control. This section describes
the production chain and associated data access.

3.1 | Hydrological process simulation

The main hydrological modelling engine of the GloFAS
hydrological reanalysis is the open source grid-based OS
LISFLOOD hydrological model (Burek et al., 2013; de
Roo et al., 2000; van der Knijff et al., 2010, https://ec-jrc.
github.io/lisflood/). Model parameters are linked to
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global geo-physical maps of land cover type and use,
topography, soil texture and depth, river channel mor-
phology and water-demand data (for detailed description,
see https://ec-jrc.github.io/lisflood-model/4_1_annex_
input-files/ and Choulga et al., 2024) and calibrated using
in-situ river discharge observations and ERA5 forcing fol-
lowing the Distributed Evolutionary Algorithm for
Python approach (DEAP; Fortin et al., 2012). The calibra-
tion aims to optimize daily river discharge simulation
(Alfieri et al., 2020; Hirpa et al., 2018) over a period as
long a period as possible within the available hydrologi-
cal observational record for each catchment. Up to Glo-
FAS v4, default parameter values are used for the
modelling of catchments for which discharge data are not
available. In GloFAS v4, a regionalization method based
on geographical proximity and climatic similarity (Beck
et al., 2016; Parajka et al., 2005) was used to transfer the
parameters from calibrated gauged catchments (donors)
to ungauged catchments. See Grimaldi et al. (2024) for a
full description of the GloFAS v4 calibration.

The hydrological modelling performance of the Glo-
FAS hydrological reanalysis is assessed with every major
cycle by comparing simulated river discharge daily time
series with river gauge observations. Figure 2 shows the
modified Kling and Gupta Efficiency criterion (KGE’, a
measure of how well the modelled time series reproduce
the observed time series, typically used in hydrology
model verification, Gupta et al., 2009, Kling et al., 2012)

associated with GloFAS v4, showing higher performance
(dark blue) in large parts of North and South America,
Central Europe and Asia. Lowest performance (grey) is
often concentrated in catchments with strongly regulated
rivers or in regions of complex hydrological processes,
such as the United States and Canadian Prairies (Shook
et al., 2021). It is not within the scope of this paper to pro-
vide in-depth analysis on the possible causes for the poor
hydrological simulation, and interested readers are
invited to read relevant papers (e.g. Harrigan et al., 2020
and Hirpa et al., 2018 for GloFAS v2.1, Alfieri
et al., 2020 for GloFAS v3 and Grimaldi et al., 2024 for
GloFAS v4). Note that GloFAS hydrological modelling
performance is similar to that of other global hydrological
models (Arheimer et al., 2020; Beck, van Dijk,
et al., 2017; Murray et al., 2023) and has shown to
improve with each GloFAS major cycle (Figure 3). Since
GloFAS v3, the KGE’ score associated with the opera-
tional system is provided through the GloFAS web inter-
face (www.globalfloods.eu). However, it is recommended
for users to conduct their own evaluation before using
GloFAS data for any downstream application, as locally
relevant observational data and performance metrics are
likely to provide additional meaningful information that
complement global assessments.

During the evolution of the CEMS GloFAS service,
two hydrological modelling configurations have been
used to generate the GloFAS hydrological reanalysis

FIGURE 2 GloFAS v4 hydrological performance as shown on the GloFAS Information System mapviewer. The colour dots represent

the modified Kling–Gupta Efficiency (KGE’) metric for all river discharge stations with river discharge observation data available for at least

4 years to the GloFAS team. The KGE’ is calculated over the whole available observational data period for each station.
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datasets: (1) until GloFAS v2, surface and sub-surface
runoff data from ECMWF Integrated Forecasting System
(IFS) were used as input to OS LISFLOOD, with horizon-
tal water fluxes along the river network simulated by the
routing component of OS LISFLOOD to produce river
discharge (Alfieri et al., 2013); (2) from GloFAS v3, mete-
orological data from ECMWF IFS were used as input to
OS LISFLOOD with all rainfall-runoff processes related
to river discharge simulated by OS LISFLOOD. The
CEMS GloFAS system has also been run at two spatial
resolutions: 0.1� for versions up to GloFAS v3 and 0.05�

for GloFAS v4. The hydrological configuration and spa-
tial resolution used to produce GloFAS datasets is
implicit from the associated version number (see
Section 3.3 for a detailed description of the GloFAS ver-
sion control).

3.2 | Hydro-meteorological forcing data

The hydro-meteorological forcing input variables to run
OS LISFLOOD (i.e., weather or runoff variables) are from
the Copernicus Climate Change service (C3S) ERA5 cli-
mate reanalysis (Hersbach et al., 2020), which provides
seamless coverage both geographically and in time.
ERA5 is the latest generation of reanalysis from the
ECMWF (Hersbach et al., 2020) available since 2019 as a
C3S product. It offers over 240 parameters at 31-km spa-
tial resolution and up to hourly temporal resolution
across the globe from 1950 to present, with post-
processed products delivered as regular latitude–

longitude grids easily accessible from the C3S Climate
Data Store (CDS). One feature of ERA5 is its ‘Timely’
component ERA5T which provides products in near real-
time with a 3–5 day latency using the same modelling
framework as ERA5, revolutionizing access to near real-
time climate-related information worldwide.

3.3 | Production chain configuration,
available datasets and version control

GloFAS hydrological reanalysis has two configurations
designed to provide the best possible datasets for different
applications (Figure 4). One is a consolidated dataset,
which uses quality-assured ERA5 forcing data to provide
a reference hydrological dataset for long-term hydrologi-
cal analysis and defining climatological thresholds. The
other is a timely dataset (GloFAST), which uses ERA5T
forcing data to deliver data as near real-time as possible
for monitoring and early warning applications.

Both the GloFAS reanalysis datasets are time series,
on a regular latitude/longitude grid, and cover the major-
ity of the world's land masses. The data are available at a
daily temporal resolution from 1 January 1979, with the
timely dataset being updated once per day and available
until in near-real-time (i.e., 2–5 days behind real-time),
whilst the consolidated dataset is updated monthly and
available with a delay of 3 months.

The first variable to have been made available is the
24-h averaged river discharge, with daily soil wetness
index, total runoff and snow water equivalent timeseries

FIGURE 3 Cumulative probability

density function of the modified Kling–
Gupta Efficiency (KGE’) criterion value

associated with GloFAS v2.1 (orange),

GloFAS v3.1 (red) and GloFAS v4.0

(purple) calculated using the 745 river

discharge stations common to all

GloFAS calibrations. The KGE’ is
calculated over the whole available

observational data for each station in the

1980–2021 verification period.

6 of 23 PRUDHOMME ET AL.Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2024, 2, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.2192 by E

uropean C
om

m
ission, W

iley O
nline L

ibrary on [02/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



expected to be added to the offering in 2024. Mean eleva-
tion and drainage network area for each GloFAS grid cell
are also made available to help users identify the correct
river grid cell when extracting data. Information about
the auxiliary datasets and their use is provided on the
GloFAS wiki pages (see https://confluence.ecmwf.int/
display/CEMS/Auxiliary+Data).

The strict version control associated with the CEMS
GloFAS service and associated GloFAS hydrological rea-
nalysis datasets is provided to users as a 2-digit number,
with the most relevant for the GloFAS hydrological rea-
nalysis being the first number that changes with every
major change in the GloFAS hydrological modelling
chain (Figure 5).

3.4 | Data access and support

The CEMS GloFAS hydrological reanalysis datasets are
openly available from the C3S CDS following a simple
registration process (see https://cds.climate.copernicus.
eu/cdsapp#!/dataset/cems-glofas-historical?tab=
overview). Users can either request data using an interac-
tive web form or through the REST-based CDS API for
programmatic access. Files are provided as gridded time-
series in NetCDF-4 and GRIB2 formats, and the data are
packed to increase storage efficiency. Metadata informa-
tion (see Table 1) includes versioning, a description of
the coordinate reference system (CRS) and spatial grid
and details on the production methods of the data.

FIGURE 4 A schematic of the key components in the production of GloFAS hydrological reanalysis datasets (valid from versions 3.1).

Red boxes show C3S time series datasets; yellow boxes show CEMS time series datasets.

FIGURE 5 Evolution of the GloFAS hydrological modelling configuration through its different versions until version 4.
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Data can be retrieved for defined periods of time and
sub-regions using a latitude–longitude bounding box.
Between November 2019 (the first publication of a Glo-
FAS hydrological reanalysis dataset on the CDS) and
December 2023, over 78 TB of data have been down-
loaded from the C3S CDS in over 566,000 requests by
2113 users from 114 countries (Figure 6).

For transparency and ease of use, the GloFAS hydro-
logical reanalysis datasets have a unique catalogue entry
in the C3S CDS, providing access to legacy versions from
version 2.1 to the operational version at the time of the
visit, and when relevant pre-operational versions. Access
to pre-operational datasets allows users of GloFAS reana-
lysis data to adapt their downstream processing chains to
a new dataset before it becomes operational, which is
especially important if there is a change in the modelling
chain (e.g., from version 2 to 3) or spatial resolution
(e.g., from version 3 to 4). Access to legacy datasets
(updated daily in a quasi-operational mode for a few
months after the upgrade) provides more time for users
to migrate from one version to another after the opera-
tional switch. However, it is recommended to always use
the latest operational version in any near-real time appli-
cation. Legacy and pre-operational datasets are not main-
tained operationally, with legacy suites always expected
to be phased out a few months after a new major cycle,
and pre-operational datasets remaining under develop-
ment until the official launch, hence they are not fully
quality-controlled and potentially subject to change.
Additionally, when used in combination with other Glo-
FAS datasets such as forecasts and reforecasts, the same
GloFAS version must be used for all datasets so that the
modelling chains are consistent.

Alternative data access streams (e.g., direct access
from the ECMWF MARS data catalogue and tailored ftp
service) are possible and recommended when data are to
be used for operational applications, as the C3S CDS does
not provide a 24/7 operational service. The service can be
set-up upon request through the GloFAS web interface
‘contact form’.

Documentation is provided directly on the C3S CDS
and the GloFAS website, with a dedicated live docu-
mentation repository for the CEMS-Flood forecasting
services (https://confluence.ecmwf.int/display/CEMS/
Global+Flood+Awareness+System) providing detailed
information on CEMS GloFAS models, procedures and
operational system, including its versioning system,
and a user guide corner (https://confluence.ecmwf.int/
display/CEMS/CEMS-Flood+User+Guide+Corner)
with detailed explanation regarding data type and
access and a FAQ section. A CEMS GloFAS Data

TABLE 1 GloFAS hydrological reanalysis metadata

information available in the C3S CDS catalogue as of

December 2023.

DATA DESCRIPTION

Data type Gridded

Projection Regular latitude–longitude grid

Horizontal
coverage

Global except for Antarctica (90N–60S,
180W–180E)

Horizontal
resolution

0.05� � 0.05� for version 4.0, 0.1� � 0.1� for
version 3.1 and older

Vertical
resolution

Surface level for river discharge

Temporal
coverage

1 January 1979 to near real time for v4.0, and
various dates for legacy versions

Temporal
resolution

Daily data

File format GRIB2

Conventions WMO standards for GRIB2

Versions Operational version—GloFAS v4.0 released
26 July 2023. A new river discharge
reanalysis will be published with every
major update of the GloFAS system. For
more information on versions, we refer to
the documentation.

Update
frequency

Updated daily

MAIN VARIABLES

Name Units Description

River
discharge in
the last 24 h

m3

s�1
Volume rate of water flow,
including sediments, chemical
and biological material, in the
river channel averaged over a
time step through a cross-section.
The value is an average over a
24-h period.

RELATED VARIABLES

Name Units Description

Elevation m The mean height elevation above sea
level for each pixel in the GloFAS
domain. Accessible via the link in the
Documentation tab.

Upstream
area

m2 The total upstream area for each river
pixel. This is defined as the catchment
area for each river segment, meaning
the total area that contributes with
water to the river at the specific grid
point. The upstream area always
includes the area of the pixel.
Accessible via the link in the
Documentation tab.
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Support service is also available, where users can ask
for clarifications on the dataset production and con-
tent, or highlight any issues they find in its access and
use. It is accessible through the ‘contact us’ form on
the GloFAS website.

4 | EXAMPLES OF APPLICATIONS
OF GLOBAL HYDROLOGICAL
REANALYSIS

4.1 | Water resources monitoring

Water is vital for the human and environmental health of
the planet, but it is unequally distributed across the
world, and can be associated with periods of surplus
(or floods) or deficit (or droughts) linked with weather
and climate variability, adding stress to the impacted
populations and ecosystems. Understanding how much,
when and where water is available is key to respond to
WMO's ambition of ‘thorough knowledge of the water
resources of our world’ (https://wmo.int/content/wmos-
eight-ambitions-addressing-water), so that informed
planning can be developed to mitigate potential water-
related disasters.

By providing information on river discharge time series
in most land masses of the world, global hydrological rea-
nalyses are powerful tools to study global water resources
independently of the ground observational network avail-
ability. This could be to assess the water resource potential
(Figure 7a) or monitor the most recent hydrological status
worldwide against long-term means (Figure 7b for a zoom
over Europe). The availability of global hydrological

reanalyses covering several decades also provides context
to quantify flood and drought magnitudes and understand
water resources variability. Two retrospective assessments
have relied on hydrological simulations to identify areas of
deficit or surplus of water. At global scale, the WMO
Global State of the Water Report 2022 (WMO, 2023) used
an ensemble of global reanalyses (including GloFAS
hydrological reanalysis v4) to establish that large parts of
north and south America, Africa and Asia experienced
below normal river conditions in 2022, in contrast to
southern Africa and Canada which had higher than nor-
mal conditions, a pattern similar to that seen in 2021. At
European scale, the Copernicus Seasonal review ranked
the summer 2022 as the second driest in Europe since
1990, with 2003 being the driest (https://climate.
copernicus.eu/seasonal-review-europes-record-breaking-
summer) using simulated hydrological river discharge
from CEMS (EFAS v4). The dataset made it possible to
highlight that between June and August 2022, river dis-
charge was below normal in 65% and exceptionally low in
30% of rivers of the European river network (Figure 7b).
The dataset also showed that the river discharge reached
record low levels across July and August in the Rhine river
basin, just 1 year after record floods on the Rhine in July
2021, causing devastating impacts in public water supply,
agriculture, power generation and industry or ecosystem.
Whilst for Europe, studies such as that presented in
Figure 7b do not necessarily rely on modelled weather rea-
nalysis input thanks to a very dense meteorological obser-
vational network (Figure 7b uses the EMO5 dataset
(Thiemig et al., 2022) as forcing data), similar rapid assess-
ments are possible globally at any time using datasets such
as C3S ERA5T and CEMS GloFAST.

FIGURE 6 Number of C3S CDS users of the GloFAS reanalysis per country from November 2019 to 19 December 2023.
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FIGURE 7 Legend on next page.
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4.2 | Global ocean monitoring

Given the tremendous social, economic and biological
value of coastal zones, Copernicus recognized the need
for enhanced core monitoring of the coastal ocean
(Le Traon et al., 2019; Mercator Ocean International and
European Environment Agency, 2018), enabling response
to European policies (MSFD, WFD, MSP, Flood Direc-
tive, ICZM, Bathing Water, Common Fisheries Policy) as
well as enhancing climate change resilience (Mercator
Ocean International, 2021; Melet et al., 2020). As river
freshwater input into global ocean modelling directly
influences coastal and off-shore ocean salinity and near-
surface mixing, there is a need for better characterization
of the land boundary and of the land-to-sea forcing.

Existing integrated systems such as the global ocean
reanalysis of the Copernicus Marine Service typically rely
on climatological (i.e., long-term averages) river dis-
charge data input, hence not accounting for any inter-
annual variability in freshwater input (Lellouche
et al., 2021). However, Zuo et al. (2019) showed that by
using the bias-corrected time-varying GloFAS

hydrological reanalysis (v2.1) as river discharge input to
the NEMO ocean model instead of a monthly climatology
(here denoted BT06), sea surface salinity biases were
reduced in regions affected by freshwater input such as
the Amazon or the North Atlantic. Such improvement
was also seen in regions known for their local ERA5 pre-
cipitation biases such as the west coast of North America
(Figure 8a), suggesting potential for better simulation
and monitoring of coastal zones. Using time-varying land
freshwater input dataset instead of a monthly climatology
also improved the representation of large-scale ocean cir-
culation features such as the Atlantic Meridional Over-
turning Circulation (AMOC) and Antarctic Circumpolar
Current (ACC). Figure 8b indeed shows that the AMOC
transport is systematically lower (by �2 Sv) and more
consistent with the RAPID-MOCHA observations
(Smeed et al., 2017) from 2008 onward compared with
simulations using climatological freshwater input (Zuo
et al., 2020). Please note that the GloFAS system does not
include ice-melt discharges in the Antarctic or Green-
land, and the same BT06 climatology was used in all
NEMO simulations for these regions. Therefore,

FIGURE 7 (a): Mean GloFAS v4 hydrological reanalysis daily river discharge over 1980–2019. Darker blue river sections have larger
river discharge. For more detail on GloFAS v4, please refer to Grimaldi et al. (2024). (b): Monthly average river discharge anomalies for June,

July and August (JJA) 2022 generated using the EFAS v4 system forced by the EMO5 dataset (Thiemig et al., 2022). The categories

‘exceptionally high (low)’, ‘notably high (low)’, ‘above (below) normal’ and ‘normal’ range relate to the percentile ranges >90 (<10), 75–90
(10–25), 60–75 (25–40) and 40–60 for the 1991–2020 reference period. Shades of blue indicate higher, and shades of brown indicate lower

discharge than normal, respectively. Grey indicates normal range discharge. Adapted from https://climate.copernicus.eu/seasonal-review-

europes-record-breaking-summer. For both (a) and (b) only rivers with drainage areas greater than 1000 km2 are shown.

FIGURE 8 (a) Differences of RMS error in salinity (in PSU) from two NEMO simulations with land freshwater input from either

GloFAS hydrological reanalysis version 3 (with bias corrections) or monthly mean climatology discharges (BT06, Bourdalle-Badie &

Treguier, 2006). RMS errors are averaged over the upper 75 m of the ocean column and against all available ocean in-situ observations

(Good et al., 2013) over the 2010–2017 period. A negative value (blue) means that NEMO+GloFAS simulated ocean state is closer to

observations compared to the one produced by NEMO+BT06, whilst a positive value (red) means the inverse. (b) Time series of the

maximum Atlantic Meridional Overturning Circulation transports at 26. 5� N (Sverdrup, 1e6m3s�1) in ocean reanalyses (12-month running

mean): Solid black = observations from RAPID mooring array. Dash green = Ocean reanalysis with time-varying land freshwater input

from GloFAS-ERA5. Dash blue = Ocean reanalysis with seasonal climatology of land freshwater input (BT06).
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improvement in the ACC transports is likely due to
improved oceanic transports from other part of the ocean
in the NEMO-GloFAS simulation, which leads to accu-
mulated water property change in the Southern Ocean
and better representation of density gradient across the
Subantarctic front. An alternative approach could be to
use satellite-based observations to derive ice-sheet mass
changes and corresponding ice-melt discharges in the
Antarctic and Greenland to complement the GloFAS rea-
nalysis. Also note that river discharge into the Arctic
Ocean in GloFAS v2.1 has high uncertainty due to poorly
monitoring of the pan-Arctic drainage area. This has
been improved in the new GloFASv3.1 product (see Win-
kelbauer et al., 2022).

4.3 | Understanding large-scale
variability and fluctuation

Large-scale climatic teleconnections, such as ENSO or
MJO, have been associated with wet/dry anomalies
(Rashid & Wahl, 2022) and local hydrological extremes
(Towner et al., 2021) but their effect at large scale is diffi-
cult to extrapolate from gauged records analyses, despite
the potentially devastating impact that synchronous
floods and/or droughts could have on global food, energy
and water security.

By using hydrological reanalyses as proxy observa-
tional records, the spatial analytical domain can be
extended from gauged locations to continental (Africa,
Ficchì & Stephens, 2019) or global (Ward, Eisner,
et al., 2014; Ward, Jongman, et al., 2014) scales, hence
overcoming the observational network gaps in regions
vulnerable to hydro-climatic hazard but with insufficient
ground-based measures, such as, for example, East
Africa. The studies have highlighted areas where climate
variability can affect frequency, timing and magnitude of
flood hazards, knowledge that could be useful to inform
flood management and agriculture planning, for exam-
ple. Back extension of the analytical period before tradi-
tional in-situ records began (typically in the 1960s) have
also become possible thanks to the availability of centen-
nial atmospheric reanalyses datasets such as NOAA's
20CR (from 1871, Compo et al., 2011) or ECMWF's ERA-
20CM (from 1899, Hersbach et al., 2015). Additionally,
reanalyses ensemble of multiple plausible realizations of
weather patterns also exist, either from a multi-model
system (Hofer et al., 2012) or from the same model
(CERA-20CM, Hersbach et al., 2015; Laloyaux
et al., 2018), so that uncertainties can be better accounted
for. A centennial ensemble hydrological reanalysis with
hybrid Numerical Weather Prediction (NWP)-land
surface—river routing modelling configuration similar to

that of GloFAS v1 and v2 was generated by Emerton
et al. (2017) based on ERA-20CM. The dataset effectively
offered a much larger sample of data than possible from
traditional observational records (10 streamflow simula-
tions for each of the 30 El Niño and 33 La Niña events)
so that areas with a robust signal between teleconnection
and hydro-hazards could be identified. Importantly, they
also were able to show that the hydrological signal was
different than the rainfall signal contained in the forcing
atmospheric reanalysis (Figure 9), showing the impor-
tance of studying global hydrological reanalysis for
hydrological extreme understanding. Nevertheless, cau-
tion needs to be applied when interpreting the results
due to potential impact of spurious trends due to change
in the data source and measurement technologies over
the years.

4.4 | Early warning systems

Early warning systems are climate service tools designed
to support disaster risk reduction and climate adaptation.
In autumn 2022, the WMO launched the ‘Early Warning
for all EW4A’ initiative (https://public.wmo.int/en/
earlywarningsforall) in response to the UN Secretary
General, aiming to address the existing gaps of nearly
30% of WMO members without multi-hazard early warn-
ing system and more than one third of the world popula-
tion not covered by early warnings (WMO, 2020).

Arguably, hydrological forecasting systems are some
of the best developed large-scale EWS (see the review by
Emerton et al., 2016), with most hydrological EWS rely-
ing on some form of hydrological reanalysis for three
important aspects. The first is to provide the initial condi-
tions (or hydrological state variables) as close as possible
to reality; this is because the quality of estimates at a
given time influences the accuracy of the future hydro-
logical states due to the strong autocorrelation in river
discharge. This is the case for both real-time and past
forecasts (used for forecast skill verification), regardless
of the forecast horizon (see, e.g., Harrigan et al., 2023 or
Emerton et al., 2018). For EWS driven by physically
based models, hydrological simulations based on the
same hydrological model configurations are generally
preferred over in-situ hydrological observations to define
the initial conditions (especially as many of the state vari-
ables of hydrological models do not have observations) to
ensure consistency in the modelling chain, regardless of
the overall forecasting techniques (e.g., based on statis-
tics, climatology or NWP information; Troin et al., 2021).
For large-scale distributed EWS requiring spatially con-
sistent and continuous information, the hydrological rea-
nalysis can be forced with atmospheric reanalysis
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(e.g., ERA5T; Hersbach et al., 2020 used in GloFAS),
hybrid datasets (e.g., HydroGDF; Berg et al., 2021) or
observation-based datasets (e.g., EMO5 but updated in
real-time used in the CEMS European Flood Awareness
System EFAS (Thiemig et al., 2022), or UK Met Office
precipitation and potential evaporation used in UK
Hydrological Outlook (Prudhomme et al., 2017)).

The second use of hydrological reanalysis is to help
derive EWS hydrological forecast products that highlight
when and where hydrological events (floods or droughts)
are expected—in support to decision making—especially
critical when EWS are based on probabilistic or ensemble
forecasting (Ramos et al., 2007). The products can then
be made available as graphs (maps/graphs) and tables,
through a tailored information system, or used to send
warning notification to subscribers (Emerton
et al., 2016). For transparency, interpretation, reproduc-
ibility and spatial consistency, the same well-defined cri-
teria are used to generate the products automatically,
generally comparing the EWS hydrological simulations
with a reference climatology. Examples include flood
thresholds for GloFAS (www.globalfloods.eu; Alfieri
et al., 2013) and GEOGLOWS Global Streamflow system
(https://geoglows.ecmwf.int/; Hales et al., 2022), or
drought thresholds for CEMS European Drought Aware-
ness EDO (https://edo.jrc.ec.europa.eu/edov2/php/index.
php?id=1000; Cammalleri et al., 2021) and the African
Flood and Drought Monitor (http://hydrology.soton.ac.

uk/apps/afdm/; Sheffield et al., 2014), all of which are
based on historical reference simulations. Using refer-
ence simulations produced with a modelling framework
as consistent as possible as that of the real-time EWS
limits the potential influence of systematic biases in the
event identification, for example, in uncalibrated regions
(Emerton et al., 2020), and allows the use of consistent
information across all of the domain, including in
ungauged catchments (Reed et al., 2007). However, the
reference simulations used to define climatological
thresholds can influence the skill of the forecasts (Hirpa
et al., 2016). Historical reanalyses, which do not explicitly
include biases associated with the weather forecast com-
ponent, are better suited to monitoring and short-term
forecasting, whilst forecast range-dependant reference
climatology and thresholds based on reforecasts have
been advocated by Alfieri et al. (2019) and Zs�otér, Prud-
homme, et al. (2020) for forecasts beyond 10 days and are
used in the operational GloFAS-Seasonal forecast system
(Emerton et al., 2018). Note also that automatic, general-
ized thresholds applied to the whole EWS geographical
domain may not be suitable for all applications, and local
user-defined thresholds can be preferred to trigger spe-
cific actions, for example, in the humanitarian sector
(Coughlan-Perez et al., 2015).

The third hydrological reanalysis application in EWS
is to provide a reference data for verifying the forecasts
anywhere, even in ungauged catchments. Forecast skill

FIGURE 9 Regions where the difference in probability of abnormally high precipitation compared to probability of high river flow, in

the month of February during an El Niño, is greater than 10% (based on the ensemble mean). Pink shading indicates that the probability of

high precipitation is smaller than the probability of high river flow, whilst green shading indicates that probabilities are larger for

precipitation. From Emerton et al., 2017.

PRUDHOMME ET AL. 13 of 23Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2024, 2, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.2192 by E

uropean C
om

m
ission, W

iley O
nline L

ibrary on [02/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.globalfloods.eu
https://geoglows.ecmwf.int/
https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000
https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000
http://hydrology.soton.ac.uk/apps/afdm/
http://hydrology.soton.ac.uk/apps/afdm/


can be derived by directly comparing forecasted and his-
torically simulated reanalysis time series, for example,
using traditional hydrological ‘goodness-of-fit’ statistics
(e.g., Bischiniotis et al., 2019 in Peru) or using a skill
score comparing the forecast system of interest to a sim-
ple benchmark forecast to assess the added value of the
EWS information (e.g., Alfieri et al., 2014, Arnal
et al., 2018, Greuell et al., 2018, Wetterhall & Di
Giuseppe, 2018 and Wanders et al., 2019 over Europe,
Harrigan et al., 2023 over the world; Figure 10). Finally,
hydrological reanalysis can also be used as perfect fore-
casts to identify sources of, and response to, forecast
errors (Arnal et al., 2017). Forecast skill is an important
metadata information that help users make informed
decision when interpreting the EWS real-time forecasts.
In the CEMS GloFAS system, the skill is summarized
through a forecast performance product directly available
on the GloFAS mapviewer (www.globalfloods.eu) that
can be overlayed with the forecast layer.

4.5 | Model calibration and training

Calibration of model parameters is an important part of
setting up a hydrological modelling system. Due to large
gaps in the in-situ river discharge observational network,
inconsistency in the quality control procedures and dif-
ferences in the methods of measurement of observations,
model calibration can be very tricky in many basins

around the world. Hydrological reanalysis can provide
consistent and multi-decadal data that act as ‘proxy-
observations’ in order to calibrate other hydrological
models. For example, Senent-Aparicio et al. (2021) used
GloFAS hydrological reanalysis to calibrate the Soil and
Water Assessment Tool (SWAT) model for the Grande
San Miguel River Basin where in-situ observations are
sparse. For the period 2005–2010, this methodology of
calibration led to an increase in skill of the simulation
of monthly river discharge compared to observations.
Abate et al. (2023) also found positive results by using
GloFAS hydrological reanalysis and actual evapotranspi-
ration (AET) from Moderate Resolution Imaging Spectro-
radiometer (MODIS) to calibrate the SWAT model for the
ungauged Kobo-Golina catchment in Ethiopia. Alterna-
tively, hydrological reanalyses can be used to extend
existing observational records (Mbuvha et al., 2022) creat-
ing a longer record on which to calibrate hydrological
models. Care must be taken to ensure that good perfor-
mance of the hydrological model is expected for the basin
of interest and a pre-processing step may be required
before application.

In addition to process-based models, data-driven
methods have gained traction in the forecasting commu-
nity due to their efficient computing use compared with
traditional physically-based NWP and hydrological
models. Mosavi et al. (2018) give an overview of machine
learning models used in flood prediction. One hydrologi-
cal forecasting example is the Google's end-to-end flood

FIGURE 10 GloFAS v3 continuous ranked probability skill score (CRPSS) for reforecasts (spanning the full calendar year period)

against a climatology benchmark for extended lead time of 15 days with respect to GloFAS river discharge reanalysis at 5997 river points.

Optimum value of CRPSS is 1. Blue (red) dots show catchments with positive (negative) skill.
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warning system which uses a multiple linear regression
model and a long short-term memory (LSTM) neural net-
work to forecast river stage (Nevo et al., 2022). Forecast-
ing of river stage was preferred to that of river discharge
due to the large training data needs for machine learning
(ML) models and the greater accessibility of river stage
observations compared to river discharge observations.
However, hydrological reanalysis can provide training
datasets for data driven hydrological forecast models,
similarly to recent ML-based weather forecast models
trained on ERA5 atmospheric reanalysis (e.g., Pangu-
weather, Bi et al., 2022 and GraphCast, Lam et al., 2023).
For example, Rahman et al. (2022) successfully used
ERA5 and GloFAS hydrological reanalysis to train and
compare multiple ML algorithms for the Danube
catchment.

Downstream applications may also benefit from ML-
based methods trained on hydrological reanalysis data.
Goharian et al. (2022) used GloFAS hydrological reanaly-
sis along with remote sensing data to train a reservoir
management decision model to optimize flood control
and hydro power generation. Hybrid data-driven and
process-based forecasts are also growing in popularity as
they allow the efficiency and convenience of machine
learning methods to be combined with the physically-
informed process-based models (Slater et al., 2023).
Hydrological reanalysis can then act as forcing and/or
training data. For example, Hunt et al. (2022) trained an
LSTM neural network on ERA5 and GloFAS hydrological
reanalysis from 1990 to 2019 and then used operational
forecasts from ECMWF IFS and CEMS GloFAS forecasts
to predict streamflow up to 10 days ahead for several
catchments in the continental United States.

4.6 | Earth system modelling diagnostics

Earth system science is recognized as critical for the
understanding of bio-geosphere interactions, including
the climate (Steffen et al., 2020), with the ESM concept
gaining traction for NWP and climate modelling (Bauer
et al., 2021; Swart et al., 2019; Valcke et al., 2006; Ziehn
et al., 2020). As for any global modelling systems, new
developments and changes in process representation are
difficult to assess due to the lack of observational data
across the world. To evaluate the benefit of developments
and assess the quality of forecasts, hydrological reana-
lyses have been used as ‘proxy’ observation or ‘hard-to-
beat’ benchmarks (Pappenberger et al., 2015). Whilst
diagnostics generally rely on in-situ observations, bench-
marking against an existing hydrological reanalysis prod-
uct provides confidence in the applicability of new
developments to simulate river discharge processes, a
component of the water cycle often neglected in ESM

diagnostics. Here we summarize two examples of applica-
tion based on hydrological reanalysis datasets: snow
scheme component of ESM and high-resolution land
processes.

ESM enhancements are often modular, with each
component investigated individually before integration
into an operational system. ecLand (Boussetta
et al., 2021) is the modelling framework of the land com-
ponent of ECMWF IFS, enabling the easy running of
experiments prior to operational implementation of new
developments of the ESM within the NWP modelling
chain. One critical component in NWP is snow, an
important land surface process influencing both the
energy and water balances and in particular the diurnal
surface temperature cycle. Whilst complex representation
of snow processes through multiple snow layers was
shown to improve both snow characteristics (depth and
mass) and 2 m temperature compared to a single layer
modelling in ecLand (Arduini et al., 2019), the evaluation
was limited to nine super sites with in-situ snow and soil
temperature observation datasets. Zs�otér et al. (2022)
extended the evaluation to river discharge at 453 locations
with daily observed timeseries of at least 8 years of good
quality data in snow-impacted regions (defined as with a
snow to rainfall ratio of at least 10%). By also comparing
river discharge and hydrological-related variables such as
snow melt, surface and subsurface runoff from a hydro-
logical reanalysis configuration using 11 different snow
module parameterizations within the ecLand land sur-
face scheme and the CaMaFlood river routing (Yamazaki
et al., 2011), they were able to diagnose errors introduced
in the multi-layer snow-scheme (Figure 11) and identify
a parameterization avoiding a degradation in the land
hydrological processes. The resulting scheme was intro-
duced operationally in ECMWF IFS 48R1.

ERA5-Land is a global reanalysis dataset of the land
component of ERA5. It aims to enhance the ERA5 reana-
lysis through a representation of the land processes at a
high spatial resolution (9 km for ERA5-Land against
32 km for ERA5) to better account for the impact of orog-
raphy and thermodynamics of near-surface states and to
include upgrades in the parameterization of the soil ther-
mal conductivity, soil water balance, snowpack processes
and potential evapotranspiration compared with ERA5
(Muñoz-Sabater et al., 2021). It is produced as part of the
C3S and is available through the C3S CDS. Similarly to
ERA5, ERA5-Land does not explicitly simulate river dis-
charge but the dataset includes surface and subsurface
runoff that can be routed offline. As part of the
ERA5-Land evaluation strategy, river discharge was sim-
ulated using GloFAS v2.1 modelling chain but forced
with ERA5-Land runoff data and compared with
observed time series for a network of 1285 locations.
Results were benchmarked against the skill of river
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discharge simulated from GloFAS hydrological reanalysis
version 2.1 forced by ERA5. Results showed an overall
improvement in river discharge skill when using
ERA5-Land in most parts of the world, attributed to a
decrease in biases and increase in correlation, although
regions such as the great plains of Canada and of the
USA and southern America showed degradation that
could be caused by an excess in accumulated snow and
overestimation in evaporation (Figure 12).

5 | DISCUSSION AND
CONCLUSION

Access to global river discharge time series at high tem-
poral (daily) and spatial (kilometre-scale) resolutions and
that are available for multiple decades and up to near-

real time offers the prospect of numerous functions and
applications. Examples include quantifying spatio-
temporal patterns and variability to help with long-term
planning anywhere, monitoring the latest water
resources and hydro hazards (e.g., floods and droughts)
for increased preparedness and rapid impact assessments,
and hydrological model calibration or training in data
sparse regions.

With the absence of a global river discharge observa-
tional network (in-situ or from EO) providing open infor-
mation everywhere at all times, model-based simulations
are a cost-effective alternative. However, users should be
aware of the limitations associated with any modelled
dataset before deciding if it is appropriate for their needs.

For global hydrological reanalysis such as CEMS Glo-
FAS, the quality of simulations is impacted by that of the
data used in the system, whether they are forcing data

FIGURE 11 Daily climatological

mean time series of (a) river discharge,

(b) snowmelt, (c) surface runoff,

(d) subsurface runoff from 11 snow

module configuration experiments for

the Olenek river at the station of

Sukhana in eastern Siberia (with area of

127,000 km2) simulated with the

ecLand-CaMaFlood configuration. All

water related variables are displayed as

catchment totals in order to compare

them directly to river discharge (please

note the values are divided by 1000 for

river discharge, snowmelt and

subsurface runoff). Each coloured line is

associated with a snow-scheme

parameterization, with river discharge

observations shown in dashed black

line—for simplicity, the experiment

characteristics are not explained here

but can be found in Zs�otér et al. (2022).
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like ERA5/ERA5T precipitation and other meteorological
variables, in-situ river discharge measurement data for
hydrological model calibration, or terrestrial water cycle
verification data (e.g., soil moisture, snow water equiva-
lent, evaporation groundwater recharge) to assess process
representation. Simplified or poor representation of
hydrological processes, such as river routing, groundwa-
ter storage or evaporation processes, and lack or inade-
quate accounting for human influence in the modelling
chain, such as reservoir management or water abstrac-
tion, also affect the quality of the simulations. Often
models rely on simplified schemes or long-term average
estimates that do not account for annual variability or do
not include sufficiently accurate information on geomor-
phology to describe appropriately complex processes.
Despite their shortcomings, global hydrological reana-
lyses can fill important spatial and temporal gaps in our
knowledge and provide qualitative information of the
hydrological status compared with climatic normal.
Global hydrological reanalyses are especially useful if
complemented with metadata and additional informa-
tion, for example, on modelling performance or included
processes (e.g., local drainage network, evaluation statis-
tics, reservoir location maps or expected downstream
streamflow influence), and tools to extract the informa-
tion accurately. Global hydrological reanalysis applica-
tions also provide unique opportunities for model
verification and enhanced process understanding, espe-
cially in areas with limited in situ observations.

GloFAS river discharge reanalysis has already
proven a popular dataset with over 566,000 requests to
download more than 78TBs between November 2019
and December 2023. Thanks to the physically based
hydrological modelling behind GloFAS simulations, the
hydrological reanalysis data catalogue offering can eas-
ily be extended to include other hydrological variables
such as soil wetness index or snow water equivalent, or
even post-processed variables such as flood inundation
extent estimates. Such developments could expand the
number of downstream applications to additional sec-
tors, such as hydropower, agriculture, hydro-disaster
(floods and droughts) insurance, or be used to comple-
ment, verify and extend existing services such as the
Global Drought Observatory (e.g., with combined low
flow and soil moisture indices) and the Global Flood
Monitoring (currently based on SAR imagery from the
Sentinel constellation), two services of the CEMS. With
a global coverage encompassing all watersheds except
Antarctica, a high spatial resolution, a continuous time
series with a temporal resolution of at least 1 day, a
period covering the satellite era and a commitment to
closely approach the real time, the product proposed by
GloFAS meets most of the criteria imposed by a real
time forecasting and/or a reanalysis system such as the
ones operated in the Global Monitoring and Forecasting
Centre GLO MFC of the Copernicus Marine Service,
and provide key opportunities for coastal applications
using offshore information.

FIGURE 12 Modified KGESS for GloFAS reanalysis v2.1 modelling chain forced by ERA5-Land runoff against the GloFAS v2.1

benchmark (forced by ERA5 runoff) across 1285 observation stations. Optimum value of KGESS is 1. Blue (red) dots show catchments with

positive (negative) skill gained using ERA5-Land forcing. From Muñoz-Sabater et al., 2021.
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Synergies between Copernicus Services are instru-
mental to the production and dissemination of hydrologi-
cal reanalysis datasets. In the case of GloFAS, resources
are shared between C3S, which provides input data
(ERA5) and efficient data infrastructure and the sharing
facilities of the CDS (such as download forms, APIs and
toolbox functionalities), and CEMS, which provides the
hydrological modelling capabilities and an operational
processing framework to provide near real-time updates
of proxy river discharge observations anywhere in the
world.
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