

UNION CIVIL PROTECTION MECHANISM

Directorate General for European Civil Protection and Humanitarian Aid
Operations

PREVENTION AND PREPAREDNESS PROJECTS IN CIVIL

PROTECTION AND MARINE POLLUTION

Grant Agreement Number 826292
Proposal Title / Acronym EUROPEAN VOLCANO EARLY WARNING SYSTEM (EVE)

D15-DATABASE ARCHITECTURE AND DATA
COMPILATION

Ref. Ares(2022)1493930 - 01/03/2022

General issues 3

Database Architecture 4

Data Lake 9

Label system 9

Obtaining Contents 11

Microservices Flask 15

ETL 16

Data transformation 16

Hasset Long Term 17

Hasset Short Term 17

Volcanic Zone 19

Data Warehouse 21

Volcanbox 22

Local Project 24

Online Project 26

Consultation and Visualization 31

Consultation 31

Visualization 32

Future Work 33

General issues
We live in an age where data as well as the information generated from it is growing at an
overwhelming rate. No less rapidly, the number and heterogeneity of sources that generate
them is growing, and the technologies responsible for supporting their life cycle are born,
updated, and die. This scenario has caused the inability to govern this vast ocean of data -
and therefore to be able to extract information from it - to become an endemic evil of the 21st
century.

The lack of agreed protocols for: extracting, organizing, transforming and storing data, make
the current scenario of Volcanology a clear paradigm of this problem. In this context, it is
difficult to take advantage of cutting-edge technologies to create tools that are able to extract
information automatically.

On the other hand, the lack of defined content structure implies that many valuable resources,
in terms of knowledge, are at best forgotten on a hard drive, whether due to human or
technological barriers.

It is therefore necessary to create a series of standard protocols and tools to address this
issue, which affects both pre-existing resources and those that have not yet been generated.

Database Architecture

When working on a scientific product in the area of volcanology, the team generates a series
of files that in many cases depend on third-party tools for their interpretation. Generally, once
the experiment is completed, these documents are stored following - at best - certain
protocols. The problem in part is that these are not agreed between the different teams. In
addition, they tend to evolve and do not create tools to adapt old work to change.

In the long run, what usually prevails are the reports resulting from the experiment. The inability
to reproduce them - due to the obsolescence of the tools and formats used, as well as the lack
of consensus on where and how they should be stored -generates a bottleneck when it comes
to making the most of it.

[Figure 1 | a]. Three teams perform similar assessments, but use different formats.

[Figure 1 | b]. Team 2 did not follow a specific protocol for storing data associated with a particular experiment. Team 1
accesses team 2's cloud to get them, Team 3, on the other hand, has requested them directly from a member of Team 2. Team

1 and Team 2 are unable to reproduce the experiment for lack of data.

[Figure 1 | c]. Team 3 accesses Team 1 and Team 2 clouds, but can't use data on them due to compatibility issues

On the other hand, creating protocols that standardize these processes involves defining
protocols and structures that adapt to the data and content you are working with. In such a
heterogeneous context, modelling all content using a single scheme is by no means trivial,
which is why it seems like a good strategy to take a multilingual persistence-based approach.

This philosophy, instead of adapting all the information to fit it into a single technology or
structure, prefers to divide the system into a set of subsystems - each of them chosen taking
into account both the type of data to be hosted, as expected of them - that they communicate

with each other. This communication is essential, as it allows you to resolve requests as if
they were a single system.

By adopting this approach, if, for example, in the future we need to store content that is difficult
to fit into our system, we could add an extra piece to it - tailor-made to carry this responsibility
- without having to make major modifications to the system.

Given this problem, an infrastructure has been designed, which will be partially implemented
during the development of the EVE project. It consists of two distinct parts:

● A tool called Volcanbox that will offer:

[Figure 2] Volcanbox Desktop Application

○ GIS toolkit capable of:

■ Extract georeferenced data from encoded files in most formats on the
market.

■ Import, modify, or generate user-friendly vector files by typing
coordinates or clicking on specific points on the map.

■ Perform - in a manner that is transparent to the user - the operations
necessary to be able to cross-encode data on more than 11,000
compatible reference systems.

○ Long and Short Term statistical analysis.

○ Elaboration of Probability Density Functions with different methods of
estimating bandwidth.

○ Elaboration of Susceptibility Maps from a weighted set of probability density
functions

○ Suite of sections for the assessment of the following volcanic hazards:

■ Lava Flows.
■ Pyroclastic Density Currents
■ Fallout
■ Landslides
■ Lahars
■ Seismicity
■ Tsunamis
■ Others

○ Partial and total hazard maps.

○ Library that acts as a database, to organize and offer information, in the same

application, that is, by "GIS" tools of third parties.

○ Tools for viewing and extracting information from data uploaded to the
application.

○ Online functions to publish information and facilitate collaboration between
teams.

○ Generation of new data from the Crossover of different experiments in order to
search for new information.

● A data storage system focused on polyglot persistence. This will be structured in

Volcanic Zones that will contain the following elements:

[Figure 3] Volcanbox Platform Data Architecture

○ Data Lake : A storage repository that contains raw acquired data. Each item is
assigned a unique identifier and a set of tags. These allow you to relate them
to each other, without the need for a closed data structure and relationships.

○ Flask Microservices : A set of services capable of storing, managing, and
delivering data stored on the system.

○ ETL : are the acronyms for Extraction, Transformation and Loading, refer to a
set of techniques, tools and technologies that aim to extract data from various
sources and transform them to be able to load them into other systems.

○ Volcanic Zone: A set of subsystems that resolve data relating to a given
geographical area. Includes:

■ Data Warehouse : A series of guidelines and good practices for storing
data extracted from the Data Lake component. Their purpose is to
provide a standard structure that facilitates their subsequent recovery,
as well as ensuring compatibility with Volcanbox.

■ Local Volcanbox Project : A directory and file structure resulting from
a Volcanic Risk Assessment generated using the Volcanbox
application, as well as all input data that has been used to perform it.

■ Volcanbox Online Project : Database architecture designed to serve
the online features of the Volcanbox application.

The purpose is that this whole set of subsystems can work as a whole in a way that is
transparent to the user. To accomplish this task, an ecosystem of microservices implemented
through the Python Flask Library is proposed.

❖ This structure will allow, among others:

➢ Preserve and recover the sources in their original format and contents.

➢ Standardize the way data is organized, maximizing its usefulness when it is
exchanged between computers.

➢ Compatible data from different sources so that it can be cross-referenced.

➢ Generate new data from existing data.

➢ Easily reproduce any previous experiments.

➢ Automate early warning delivery using the VEWS Volcano Early Warning
System platform.

➢ Prepare the terrain for the application of machine learning algorithms.

[Figure 4 | a]. Teams send data for storage, and ETLs transform data into suggested formats. The red team has adopted the
Volcanbox platform, so it can use the data without the ETLs having to transform it. In the blue team some members have

decided to adapt the proposed formats, otherwise there are members who have not yet made the leap; however, thanks to ETL
transformations all members can receive the data in the desired format. The green team still uses its usual formats, thanks to

the ETLs they can now get the data that the blue and red teams have saved.

[Figure 4 | b] The complexity of the platform is transparent to the user, they see the system as a black box that accepts the
desired formats.

* VEWS is a platform that through a set of web tools aims to facilitate interaction and cooperation between scientists and Civil
Protection Agencies to anticipate volcanic disasters in a timely manner. The Volcanbox application will be able to connect to the
VEWS to generate or update new alarms and include in them all the results considered appropriate.

Data Lake

One of the challenges associated with the problem that this methodology seeks to resolve is
to ensure the availability of all relevant content in terms of volcanic risk assessment. The
disparity - in terms of format, structure, nature, purpose, etc. - make it very difficult to store
them using a closed scheme. This is a very common issue in the so-called big data
environments, for this reason the concept of Data Lake -very present in these environments-
has been taken as inspiration.

A Data Lake is a large set of raw data, which does not yet have a definite purpose - unlike for
example a Data Warehouse where data has already been structured, filtered and processed
for a specific purpose.

[Figure 5] Data Lake

When content is in Data Lake, it can be normalized and enriched. This may include metadata
extraction, format conversion, augmentation, entity extraction, crosslinking, aggregation,
denormalization, or indexing.

This type of implementation has been chosen so that users can include as much
heterogeneous content as possible, otherwise it will also allow the creation of a database to,
in the near future, combine and process this data using mass data techniques, and so on to
be able to carry out searches and analyses that would otherwise have been impossible.

Label system

As mentioned above, the Data Lake component does not have a defined structure. But how
does Data Lake then be able to provide us with information when we want to retrieve it?

Unlike other systems where data is stored following certain formats and / or a certain hierarchy
of directories, files, tables, relationship tables, etc. our Data Lake component assigns each
item a unique identifier, and a series of tags.

These tags can be either a manual assignment - that is, made by the same user or automated
- that is, made by the same system using, for example, artificial intelligence techniques. In
fact, in the latter case, as the Data Lake grows, the system will be able to learn and discover
new similarities between the different stored content, and thus enrich the data by assigning
new tags automatically. For example, it may be the case that a user stores content without
being clear about the correct tag and that the system itself finds one or more suitable ones. It
is worth noting that for time limitations, only the first option has been implemented, however,
the system is fully compatible with the second.

In order to label the contents, we follow the work carried out in [Bartolini et al. 2014] * which
proposes a database structure called VERDI aiming at data storage for the assessment of
volcanic hazard and risk.

[Figure 6] Verdi Database Structure Groups

* Despite taking advantage of the work done in the Verdi data architecture, the concept of a label should not be confused with a
specific storage structure. On the contrary, the only thing that is advised to the user is that, if he uses, for example, the tag,
shape, also use the top tags, this way you can filter the information as if it existed in a real hierarchy - in terms of
implementation - without it really being that way.

One detail to keep in mind is that, by its nature, this component is not designed to provide
real-time data. This is where the concept of polyglot persistence makes sense, so to solve
requests in real time, we already have other more suitable components in our system.

On the other hand, sources can often contain information that is considered confidential,
fortunately, the data lake is equipped with tools to ensure control of access to information.

Obtaining Contents

Regarding the process of obtaining the contents in order to include it in our Data Lake, we can
also make a simile with the Silo concept of massive data environments.

In our case, Silos can be the hard disks of research groups, databases such as WOVOdat,
web pages and databases of volcanological laboratories (e.g. Volcanological Observatory of
Piton de la Fournaise, INGV Osservatorio Etneo) or the website of the National Geographic
Institute (IGN).

Data Silos occur when there is no centralized system to store all the data on a computer. A
Silo, therefore, makes it more difficult to discover new data, as each is controlled by an
independent department, with different policies and even technologies.

You may feel that Data Silos are needed to allow more flexibility for computers, iterate faster,
and adjust policies to needs in a simple way. However, from a global point of view, it is very
difficult to extract value from the data and discover new ideas.

One of the main reasons for adopting a Data Lake is usually to avoid Data Silos, which often
occur due to rapid and uncontrolled growth.

As for the EVE project, the task of compiling data has had to be mostly manual and has
required the collaboration of the different partners of the project. Each workgroup has its own
databases, and its own storage systems, but the vast majority of these do not have an
extraction system for external users, which makes it difficult to extract the data without their
collaboration. In order to obtain the necessary data to be able to perform the Long Term and
Short term analysis, the partners were provided with two templates in ‘.ods’ format in order to
gather the data of the volcanoes and eruptions selected for study.

The template that aims to collect the eruptive history of a given volcano is what we have called
Long Term Template and is as follows:

[Figure 7] Long Term Original Template

In this table, the information of the different identified episodes of unrest of a certain volcano
has been collected. Each row in the table corresponds to an episode of unrest, and for each
of these episodes the following data has been entered in the different columns:

● Initiation date
● Duration in days
● Origin of the unrest

○ Magmatic, hydrothermal, tectonic or other
● Outcome of the unrest

○ Magmatic eruption, phreatic explosion, sector failure, or no eruption
● Location

○ Central, northern flank, southern flank, eastern flank or western flank
● Size (VEI)

○ Form 0 to 8
● Composition

○ Mafic or felsic
● Hazard

○ Lava flows
○ PDC
○ Fallout
○ Ballistic
○ Lahars
○ Landslides
○ Others

● Extent
○ Small, medium or large

With this information entered, each unrest episode will be characterized, and with the whole
set of unrest episodes, we will have collected the eruptive history of the volcano, through the
time-lapse selected. These data are necessary to be able to make calculations of eruption
probability and the most probable scenarios by using the tools developed in this project.

In order to obtain the data needed to perform the Short Term analysis of selected eruptions,
the template we have called Short Term Template was developed and is as follows:

[Figure 8] Short Term Original Template

The aim of this template was to collect the data obtained through the monitoring networks of
the different volcanological observatories and of different episodes of unrest. The most widely
used unrest indicators used by the experts were chosen and which include seismic, gas,
deformation and other observations such as the presence of fractures, groundwater
explosions or the presence of fresh magma. The different parameters are in the rows of the
table. In the first column, we must enter the "Background level" of the parameter whose data
we are entering. This value will mark the moment when, in the case of having higher parameter
values, the volcano will have entered a state of unrest. In the second column we will introduce
the “Variation range”, a value from which we will consider that there has been a change with
respect to the previous bulletin. The ideal scenario is that these values are introduced by
experts from different volcanological observatories. The next column is that of the bulletin.
Here we will enter the date, and the value of the parameter that has undergone a change in
the "value" column. In the event that we do not have absolute values but relative ones, in the
“Y / N / Not available” column, we will include “Y” in the event that the parameter has changed
with respect to the previous bulletin, “N” in the case that has not changed, and "Not available"
when we do not have information.

The data obtained have been extended by searching to:

● WOVOdat database (https://wovodat.org/)
● Global Volcanism Program, Smithsonian Institution web page (https://volcano.si.edu/

)
● Catalogues and bulletins published on the websites of the various observatories, the

main ones consulted were:

○ National Geographic Institute (IGN) (https://www.ign.es/web/ign/portal/vlc-
area-volcanologia)

○ Volcanological Observatory of Piton de la Fournaise
(https://www.ipgp.fr/fr/dernieres-actualites/344)

○ National Institute of Geophysics and Volcanology (INGV) Etnean
Observatory. Catania Section (https://www.ct.ingv.it/index.php)

● Publications in scientific journals
● Master's thesis and Doctoral Thesis

Unrest monitoring data has been compiled for the following volcanoes: Asama, Aso,
Bezymianny, Chichón, Colima, Dabbahu, Etna, Galeras, St Helens, El Hierro, Fagradalsfjall,
Kilauea, Mauna Loa, Merapi, La Palma, Pinatubo, Pitón de la Fournaise, Popocatepetl,
Redoubt, Sakurajima, Stromboli, Tenerife, Tungurahua and Unzen.

Unfortunately, although in order to carry out the objectives of this proposal it is not desirable
to have to adopt this mostly artisanal methodology, ours is a paradigmatic case. However, in
order to find solutions to this problem, this first approach was strictly necessary, as we needed
to know in depth the characteristics of the domain in which we are working.

This issue highlights the need for a proposal like ours and, more specifically, the development
of tools to automate the maximum number of processes surrounding the data life cycle. These
tools should be comfortable, secure, and accessible to all types of users involved, and should
be minimally intrusive and most compatible with pre-existing systems. This is where flask
microservices come into play.

Microservices Flask

Python Flask microservices, among others, can assume the responsibility of “translator”
between technologies, offering a unique method and language of consultation to communicate
with the different subsystems. Imagine for example that we have different subsystems each
with a completely different query language, a Microservice is able to link a particular query
and create a new one adapted to the needs of a subsystem. In this way you can offer the user
the feeling of being working on a single system source.

As we will see later, there are cases where the data requires intermediate processes to
extraction and storage. In these cases, the power of Python can be harnessed to carry them
out. In fact, processes can communicate with each other, providing a gateway to the adoption
of external tools in case using Python Scripts is not the best option. Thus, we can create a
whole ecosystem of specialized Microservices with the aim of obtaining maximum efficiency.

It will therefore be necessary to adopt and elaborate tools for extracting, transforming and
loading information.

ETL

The tools of information extraction, transformation and loading are very important in
architectures composed of different subsystems -as is the case of ours-, as they have the
responsibility to act as a link between the different technologies that are involved.

The ultimate goal is to make these tasks automated and linked to microservices that handle
requests, but as we will see later, we are currently a long way from that goal.

If we think about our system, as we have described it, there is clearly a flow, and with each
advance, the data goes from being potentially unstructured to having a more defined structure.
Specifically, and in terms of data storage, we have the following phases:

 Data Lake: No hierarchy required, any format is accepted.

Data Warehouse: It follows a hierarchy of directories and formats. Formats can be
quite different for the same type of data.

Local Project: It follows a hierarchy of directories and formats. Formats are always
the same for the same type of data.

Online Project: The data is indexed following a closed table and relationship scheme.

It is at the midpoint between these phases that ETLs make sense.

Data transformation

In the case of Data Lake, in order to preserve the original contents, only a loading and
extraction process is carried out, so it only depends on microservices that are able to obtain
the target content and store it with the corresponding tags. Otherwise, in the case of the Data
Warehouse, once extracted, the necessary transformations must be carried out to follow its
standards. Volcanbox, on the other hand, is prepared to carry out all the necessary
transformations automatically, when the formats you receive follow the specifications of the
Data Warehouse.

To describe these processes, we will take as an example the case of Short and Long term
analysis. The data collected from the template shared with partners and enriched by
bibliographic data had to be stored into a spreadsheet that has the .ods format and meets the
requirements of Volcanbox.

Admittedly, some transformations could have been avoided if the final Volcanbox compatible
template had been available, but it was not yet defined. In future data requests, the new
template will be sent in order to avoid this transformation.

The following is an example for each case:

Hasset Long Term

The data collected from the Long Term template must be partially transformed and stored in
a spreadsheet. The transformations that must be performed in order to be compatible with
Volcanbox are as follows:

● Location column. Up to a maximum of 5 areas listed from 1 to 5 will be defined,
based on the information collected in the Long Term Template. The corresponding
number will be entered in the "location" field.

● Hazard Group column. Up to 12 Hazard Groups will be defined, listed from 1 to 12.
Each of the groups consists of a combination of hazard and extent. The
corresponding number will be entered in the "Hazard Group" column.

The following is an example of the spreadsheet corresponding to La Palma transformed to
be uploaded in the Hasset Long term:

[Figure 9] Long Term new Template

Hasset Short Term

As for unrest data, compiled from the Short Term Template and expanded with data from
catalogues and bulletins published by various volcanological observatories (among others),
they have also been transformed and stored in spreadsheets in .ods format. The
transformations that have had to be carried out in order to meet the requirements of the
Hasset Short Term are as follows:

● Date must be in YYYY_MM_DD format
● The "Id" column should include the bulletin number
● Numbers with decimals must be 00.00 (English format)

The following is an example from the El Hierro transformed spreadsheet for inclusion to the
Hasset Short Term:

[Figure 10] Short Term new Template

It should be said that this and other processes can be carried out with the help of tools such
as Hevo Data, Pentaho kettle, GeoKettle, Python scripts etc.

Volcanic Zone

A volcanic area refers to the area covered by certain data in terms of georeferencing.

[Figure 11] Volcanic Zone

For each Volcanic Zone, there will be a Data Warehouse that will contain all the data referring
to its geographical extension -Basically, in terms of implementation, it is actually a large
distributed warehouse that contains all the warehouses of all the volcanic zones, but we have
thought that giving this vision would help the user to work more comfortably and focus on the
case of study in question-.

On the other hand, when you want to study a subzone - which may contain data from one or
more volcanoes - a new Volcanbox Project will be created.

[Figure 12] Volcanic Zone Folder Structure Abstraction

[Figure 13] Volcanic Zone Folder Structure Example

For example, La Palma is a Volcanic Zone that in geographical terms contains the following
volcanoes: El Charco, Cumbre Vieja and Teneguía. The Data Warehouse of La Palma will
therefore contain all the data needed to create a Volcanbox Project for each of the volcanoes.
These projects will be stored within the same volcanic area to which the volcano belongs. It
may also be the case that it contains projects for two or more volcanoes.

On the other hand, all zones contain a metadata file in Json format with ‘.zne’ extension which,
similar to Data Lake tags, allows you to index the information to retrieve it by applying different
filters. The file contains the following fields:

● Name: Name of the Volcanic Zone.
● Country: Country
● Extension: Geographical coordinates that refer to the total Volcanic Zone.
● Geodynamic Setting: Tectonic regime that characterises the Volcanic Zone -for

example, subduction, ridge, oceanic hotspot, etc.-
● Types of Volcanism: Describes whether they are central volcanoes or monogenetic

fields.
● Important Volcanoes: List of most representative volcanoes in the area.
● Composition: Main chemical composition of magma.
● Eruptive dynamics: Briefly describe the main types of eruptions.
● Historical volcanism: Existence or not of historical volcanism with eruption or not.
● Description: Field where the user can enter extra information or which does not fit in

the other fields.

[Figure 14] Volcanic Zone Metadata File Content

Data Warehouse

Following the architecture design, we have been inspired by the Data Warehouses of Big Data
environments to create the next piece of our system. It is common to see articles where the
virtues of a Data Lake are confronted with those of a Data Warehouse. However, when it
comes to polyglot architectures like ours, the two subsystems can coexist and add value to
the system.

[Figure 15] Data Warehouse

In our case it is a very simple Data Warehouse where only data that has gone through
validation processes is stored where the necessary transformations have been applied to be
compatible with Volcanbox. These transformation processes only apply if necessary.
Volcanbox Application accepts several geodata formats, and any format accepted can be
stored into the Data Warehouse.

This philosophy is followed to try to make minimal changes to the original data and to be able
to recover it, because otherwise only the unvalidated version of Data Lake, or the modified
version of the Volcanbox Project, could be recovered, probably containing modifications or
errors.

For example, in the case of Spatial Analysis, in order to be able to retrieve the contents stored
in the Data Warehouse of a volcanic zone, the following directory hierarchy has been defined:

[Figure 16] Data Warehouse Structure

○ Group: Set of information of the same type, for example, Geological, Geographical,
Volcanological, Infrastructure,

■ Type: Refers to the type of structural element - Example: 'wind', dyke
',' fault ', etc.-

● Format: Content type, for example, 'Document', 'raster',

'shape', 'chart','spreadsheet', etc.

Volcanbox

Given a volcanic area, a project is a directory that contains all the structured data needed to
reproduce a risk assessment using the Volcanbox application, as well as its results.

The application is divided into sections - such as Short Term Analysis, Probability Density
Function, Lava Flows, etc. - and these are grouped according to the type of analysis being
performed. In order to use these sections, the user must first create a new project and choose
or create a Volcanic Zone where to place it. The input and output data of the different
experiments that the user carries out will be distributed in Datasets that the user will be able
to store within the Local Project.

If you want to use sections with GIS functionality, the user will have to select a main digital
elevation model, this action must be carried out at the time of creation of the project. Important
information will be extracted from this model, such as: the geographical extension covered by

the project, the height for each point of it, the resolution, the geographical reference system
that will be used as a basis, etc.

This way, when a user wants to retrieve an experiment, all he has to do is open the target
project, select the Dataset referring to it, and then continue working at the point where he left
it. In case this section includes GIS sections, its Datasets will be associated with one more
layer.

The goal is for the datasets to end up enriching both the Data Lake and the Data Warehouse.
For example, imagine that a user obtains certain results using the Volcanbox application, and
once validated, decides to enter them in Data Lake. Depending on the tags you use - or as
determined by the system - you will be able to relate them to pre-existing data for: Carrying
out comparisons, new analysis with Big Data techniques, generating new data sets, etc.

The application contains a section called Library, where the user can consult, upload or
download, for each volcanic zone, all existing projects, as well as their datasets. In the current
version of the application, you can only work with projects located on the computer where it is
running, but it is planned to offer a network connection to work with remote libraries.

If we were to make a simile once again with the world of Big Data, the Volcanbox application
would be a data mart.

To be able to create a project using the Volcanbox application, the user must first have created
or imported at least one Volcanic Zone - choosing one is a sine qua non condition for creating
a new project. The projects - as well as the Volcanic Zones - also contain a ‘.vbx’ metadata
file where a Volcanic Zone field is added. This field contains a replica of the entire contents of
the ‘.zne’ file in the Volcanic Zone that was selected when you created the project. This
process is carried out to allow users to import projects even though they do not have
information regarding this volcanic zone. This is information that, despite being replicated, is
not very important in terms of disk space.

The software, then, when an import is carried out, checks if this Volcanic Zone exists. If not,
ask the user if they want to create this zone from the imported metadata, or prefer to specify
it manually. If so, in case there is a difference, ask the user if you want to update the local
zone- based on the metadata of the imported project - or instead keep the existing ones.

[Figure 17] Local Volcanbox Project

Since the application is designed to load and store data both locally and remotely - in future
updates - two very different approaches have been designed.

Local Project

As for the local version, one of the initial requirements of the application is that the results
generated are searchable by the most used external applications on the market - regardless
of the hardware or operating system in which they run - therefore, they need to be saved in
formats that are compatible with them. To meet this requirement, the following formats have
been chosen as the main pillars for storing information:

● GeoTiff : Its main advantages are its suitability for a wide range of applications
and its independence from computer architecture, operating system and
graphics hardware.

● JSON : It is a format, in plain text, this fact makes it suitable and secure for
transfer between platforms and operating systems that do not easily share
more complex types of documents. It is lightweight and its syntax and structure
can be easily interpreted by applications that do not yet know what type of data
they will receive.

● Shape : Its simple structure allows you to spatially describe vector features:
points, lines and polygons, which represent, for example, winds, fissures,
dykes, etc. Each element can have attributes that describe it.

All volcanic areas, as well as projects in this version, are saved in the Volcanbox Library folder.
This folder is structured in folders referring to Volcanic Zones and these are structured in
folders referring to Projects. All folders related to Volcanic Zones contain a Json format file
with a ‘.zne’ extension at the root of their directory, as well as those referring to projects with
a ‘.vbx’ file. These contain your metadata and are essential for its execution.

● Name: Name of the project.
● Date: Date the project was created.
● Version: Project version.
● Responsible: Responsible for the project.
● Purpose: Description of the project objectives.
● Volcano: Name of the volcano.
● Type: Volcanic building type - for example: shield volcano, stratovolcano, caldera,

dome, scoria cone, maar, tuff ring, tuff cone, fissure.
● Historical eruptions: Dates of representative historical eruptions.
● Hazard: Contains for each danger to be studied, the conventions referring to the range

of values that correspond to a long, medium, or small extension.
● Dem: Contains metadata related to the main elevation model of the project.

● Volcanic Zone: Replica of the content of the '.zne' file of the zone to which the project
belongs.

[Figure 18] Project Metadata File Content

Each Project will also contain two directories, one to store the Datasets in Json format and
another to store the layers associated with them in Geotiff and Shape format.

[Figure 19] Project Folder Structure Abstraction

[Figure 20] Project Folder Structure Example

This directory structure is explained in detail below:

● Volcanbox Library:
○ Volcanic Zone:

■ Project Name : The root directory of the project is the only one that the
user can name, but it is a requirement that if it exists, it is empty at the
time of creating the project.

● Dataset : Contains a directory for each available section
○ Section : For a given section, it contains all the Datasets

belonging to the project in question.
● Layers : Contains a directory called Main Dem, also contains a

directory for each section.
○ Main Dem : This directory contains all the files related to

the main digital elevation model of the project.
○ Section : Contains, for a given section, a directory for

each type of georeferenced data file generated by the
application.

■ Shape : Contains the vector files of the project.
■ Raster : Contains the maps generated with the

application - elevation models, probability density
maps, etc.

Online Project

In terms of Project loading and storage, the online functionalities of the application are
designed to facilitate collaboration between members of the same or different teams. On the
other hand, in the medium term, the goal is to use Volcanbox to create a large database with
which, thanks to standardization, computers can cross-check their data with those of other
computers - provided they have of the appropriate permissions-, thus generating new content
that creates a chain of feedback that exponentially increases the use of resources. For
example, a user will be able to create a new project with their own information and enrich it to
carry out operations such as:

● Compare the results obtained for the same Volcanic Zone.
● Compare the behaviour of two different Volcanic Zones, for example, to find

patterns that offer knowledge.
● Enrich parameters for which not enough information is available.
● Real-time data provided.

On the other hand, despite being a desktop application, the prospect of generating software
that can be easily translated into an online version has never been lost. This will allow taking
advantage of the power of the current supercomputers to be able to work with models of high
resolution, and to carry out operations that would not be possible in an average hardware.

In order for the application to be ready to support these features, the following conceptual
scheme has been designed:

[Figure 21] Online Project dB Design

● Volcanic Zone :

○ Describes a particular volcanic area.

● Project
○ Describes the metadata described in the ‘.vbx’ file. Either through their fields

or through their relationships.

● Section
○ Describe the sections available in the app. This table does not allow

insertions by customers.

● Dataset
○ For a certain section, it resolves the metadata needed to obtain all the data

needed to run the experiment associated with it, as well as to retrieve the
results.

● Parameter
○ Describes an input or output parameter of a dataset for a given section.

● Hazard

○ Describe the metadata of a type of hazard to study. It also solves some
conventions, such as the range of values that correspond to a long, medium,
or small extension.

● Unit
○ Describes a type of unit of measure.

● Coordinates

○ Describes the value of a coordinate.

● Point
○ Describe a location within the extent of the volcanic subzone under study.

You can also describe the value for a couple of coordinates.
● Driver

○ Describes a geospatial data format compatible with Volcanbox.

● User
○ Describes a user's credentials. These are the email, first name, last name,

and password

● Geodynamics Setting
○ Describes the possible tectonic regimes of a Volcanic Zone.

● Country

○ Describes the name of a country, and its reference code.

● Volcano Type
○ Describe the type of volcanic building.

● Extent

○ Describes a geographical extension for a layer or a Volcanic Zone.

● Layer
○ Describes a set of georeferenced data.

● Crs

○ Describes a coordinate reference system.

● External Data Folder
○ Describes the directories where the data that is structured within a given file is

stored.

● File :
○ Describes the name, extension, format, and description of a file.

To simplify, all the tables referring to institutions, position, etc. have been omitted.
In the event that a point contains a value, it must be linked to a unit that will describe the unit
of measure of the value of the point.

All points in a layer of a given project must be within the extent of a volcanic zone of a project.

The fact that we have chosen a relational scheme has been because in the end point of the
chain where we are, where the data has been structured following certain protocols, we can
already store them following a predefined scheme, because we also know that this will not
change if the Volcanbox application does not, which would not escape our control. This allows
us to take advantage of all the benefits of relational databases, without sacrificing more
innovative features - which we will have to find in previous points of the gear, but which will be
there.

Consultation and Visualization

Consultation

In order to provide the reader with an example of how the different contents of the Volcanbox
Platform are structured, a service has been enabled that communicates with the different parts
of the platform. The documentation related to this is interactive and can be consulted via the
following link:

https://www.volcanbox.com:5000/api/

By accessing the aforementioned link, the user will be able to see a list of the different
microservices that can be consulted and for each of these the end points to the consultation
methods currently available. For each method a general description is shown, the type of
method and a description of the input and output parameters, in addition, an interactive form
is also included that allows you to enter the input parameters to make a request of execution.

At the time of writing, only server-level security protocols have been implemented, but not in
service level. It is important to note that the purpose of this service is simply to allow users to
download a sample of the content that has been generated. On the other hand, it can be useful
to give an idea of how the whole system may or may not be transparent to the user depending
on the needs, permissions, etc.

The final points of interest currently implemented can be consulted through the section,
Volcanbox, via the following link:

https://www.volcanbox.com:5000/api/volcanbox/

This works as a discovery and therefore returns all available query methods. Similarly, a direct
discovery of the different subcomponents can now be made using the following links:

https://www.volcanbox.com:5000/api/volcanbox/lake/

https://www.volcanbox.com:5000/api/volcanbox/warehouse/

https://www.volcanbox.com:5000/api/volcanbox/project/

For a better understanding of the methods and as an interactive tutorial, it is recommended to
use the respective section of the documentation.

Visualization

In order to visualize the information, a great effort has been made so that the user can choose
the application that he decides, regardless of, at what stage in terms of structuring it is. It is
recommended, but from now on, to work with the Volcanbox application - the launch of its first
release is imminent - to consult and perform new evaluations….

[Figure 22] Example of Volcanbox Desktop App Visualizations

Future Work
Nowadays, when we talk about Volcanbox, we can do it as desktop software or as a platform
to which it belongs.

The Volcanbox Platform encompasses all the solutions we have described and has been
designed with a dual perspective, on one hand, it is itself a database and on the other hand it
has a set of applications that help scientists predict when, how and where a future volcanic
eruption may occur and when necessary to issue volcanic alerts (volcanic VEWS).

This platform has been designed to be implemented in different stages. Given that this is a
project that will last over time, its scalability has been considered since its initial planning.

This platform will require continuous improvements and updates in order to become an
efficient tool. Thanks to the EVE project, we have reached the first stage. However, the design
covers a larger domain than the project itself in order to avoid that the content generated
becomes part of the problem to be solved.

One conclusion reached is that Data Lake is a key piece in both centralized and standardized
contents and making the most of it. We can say that this piece - by its nature - already existed,
but it had not been given an entity or proposed a method to govern it. As part of this first stage,
the work that has been carried out in terms of data obtaining is only a demo service, which
allows you to consult the available tags and extract the content available for them. However,
this is merely conceptual and lacks many features and content that will be implemented in
future projects.

Concerning ETL tools, we have designed a set of templates, which have allowed us to
structure the data extracted from the contents of the Data Lake - obtaining the desired results-
. In this process, we have found the difficulties that can lead to errors, and we have made the
appropriate changes to the data insert sections of the Volcanbox Application. Unfortunately,
the part that connects Data Lake to the Data Warehouse still requires substantial user’s
manual effort, nevertheless, we are working to solve this problem.

The Data Warehouse is defined as a phase between open and close structure of data. It's
simple, but that makes it user-friendly. It currently meets our needs, but as users begin to
adopt the system, its complexity could increase. In this sense, we think that in order to make
the Data Warehouse a good component for all users, good communication with them is
important.

We have defined the formats and the data structure for the application Volcanbox. In addition,
we have implemented its own ETL and Gis tools, the Short and Long Term analysis modules,
the library and Susceptibility maps sections and partially the simulation models. Conversion
tasks have also been performed to make it cross-platform -Mac, Linux, Windows-.

Although the application is in an advanced stage of development, the platform needs further
work in terms of implementation. In particular, the efforts carried out in future projects must be

aimed at automating the processes of content extraction, loading and transformation, as well
as designing and implementing the necessary algorithms to take advantage of the possibilities
of the different designed components. It is worth noting, however, that these tools must be
created as knowledge of the nature of the data is gained. On the other hand, with regard to
the Volcanbox Application, the version we are currently testing has not yet implemented the
volcanic zones - we are working directly on a project scale - as this is a relatively new feature
that generates some breaking changes. These changes will be added to the next beta test
release. In addition, a partial part of the simulation models needs to be finished. The Early
Warning System graphical interface of the application, has to be implemented. As well as a
beta testing period to improve overall performance and stability.

The new funding approved will allow implementing all these functionalities, that given the
temporary limitations of the project have not been implemented.

