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1 Data fusion

Data fusion is a multidisciplinary field combining information frommultiple sources
to produce more consistent, accurate, and valuable data than any individual
data source. This process is integral to various applications across numerous
fields, including sensor networks, robotics, defense, environmental monitoring,
medical diagnostics, and disaster management. Data fusion aims to enhance
the overall understanding and decision-making capabilities by exploiting the
strengths and compensating for the weaknesses of individual data sources.

Data fusion is deeply rooted in the principle that integrating diverse datasets
can reveal patterns and insights that are not evident when considering each
dataset in isolation. This is particularly relevant in complex systems where dif-
ferent types of data collected from various sensors or sources need to be syn-
thesized to form a coherent picture of the situation. For instance, in earthquake
risk assessment, data fusion can integrate structural damage, geological, and
demographic data to provide a comprehensive risk profile.

Mathematically, data fusion can be approached through various methodolo-
gies suited to different data types and application scenarios. Bayesian inference
is one such method, grounded in Bayes’ theorem, which provides a probabilis-
tic framework for updating the likelihood of a hypothesis as new evidence is
obtained. This approach efficiently handles uncertainty and incorporates prior
knowledge into the analysis. By updating the prior probabilities with new data,
Bayesian inference produces posterior probabilities that better reflect the current
state of knowledge.

Another prominent data fusion technique is the Kalman filter, which is widely
used in dynamic systems to estimate the state of a process over time. The
Kalman filter operates recursively, using a series of measurements observed
over time that contain noise and other inaccuracies. It predicts the current
state based on the previous state and corrects this prediction using the new
measurement. This method is especially useful in applications such as navigation
and tracking, where real-time data from multiple sensors must be integrated to
accurately estimate an object’s position and velocity.

Dempster-Shafer theory, also known as the Theory of Evidence, offers an
alternative approach to managing uncertainty and combining evidence from dif-
ferent sources. Unlike Bayesian inference, which relies on prior probabilities,
Dempster-Shafer theory assigns degrees of belief to various hypotheses based
on the available evidence. These beliefs are combined using Dempster’s rule of
combination, which accounts for the conflict and agreement between different
pieces of evidence. This method is advantageous in scenarios where information
is incomplete or ambiguous.
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The weighted sum method is another data fusion technique that deals with
combining multiple criteria or factors into a single comprehensive score by as-
signing weights to each criterion based on its relative importance. This method
is straightforward and intuitive, making it widely used in various decision-making
processes. Each criterion is normalized to ensure comparability, and the weighted
sum is calculated by multiplying each normalized criterion by its assigned weight
and summing the results. The simplicity of this approach allows for easy inter-
pretation and implementation, making it suitable for initial assessments.

Integrating multiple data sources through these techniques can significantly
enhance the reliability and robustness of the resulting information. In disaster
management, for example, data fusion can combine seismic data, structural
health monitoring data, and demographic information to comprehensively assess
the physical and human impacts of an earthquake. This integrated approach
enables more effective resource allocation, emergency response planning, and
long-term mitigation strategies.

Despite its advantages, data fusion also presents several challenges. These
include issues related to data heterogeneity, where different sources may pro-
vide data in varying formats and resolutions; data quality, where the reliability
and accuracy of each source must be assessed; and computational complexity,
as integrating large volumes of data from multiple sources can be resource-
intensive. Addressing these challenges requires sophisticated algorithms and
robust computational frameworks capable of handling the intricacies of real-
world data.

In conclusion, data fusion is a powerful means that will continue to help in-
formation integration. By using various mathematical and computational tech-
niques, data fusion enables the synthesis of comprehensive and accurate infor-
mation from disparate datasets. This capability is particularly crucial in fields
such as disaster management, where timely and accurate information can sig-
nificantly impact the effectiveness of response and mitigation efforts. As data
continues to grow in volume and complexity, the importance of advanced data
fusion techniques will only increase, driving further innovation and application
in this critical field.

2 Bayesian inference

2.1 Introduction

Bayesian inference is a powerful statistical method used to update the probability
estimate for a hypothesis as more evidence or information becomes available.
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This approach is based on Bayes’ theorem, which describes the probability of a
hypothesis given prior knowledge and new data. The theorem is a fundamental
tool in the field of statistics and is widely used in various applications, including
data fusion, machine learning, and decision making under uncertainty.

Bayes’ theorem provides a mathematical formula for updating probabilities.
It is expressed as:

P (H|E) =
P (E|H) · P (H)

P (E)

where: P (H|E) is the posterior probability of the hypothesis H given the evi-
dence E; P (E|H) is the likelihood, which is the probability of the evidence E
given that the hypothesis H is true; P (H) is the prior probability of the hy-
pothesis H, representing the initial degree of belief in H before observing the
evidence; P (E) is the marginal likelihood, also known as the evidence, which is
the total probability of the evidence under all possible hypotheses.

The marginal likelihood P (E) can be computed using the law of total prob-
ability:

P (E) =
∑
i

P (E|Hi) · P (Hi)

where Hi represents all possible hypotheses. The prior probability P (H)
represents the initial belief about the hypothesis before any new evidence is
taken into account. It encapsulates existing knowledge or assumptions about
the hypothesis.

The likelihood P (E|H) is the probability of observing the evidence given
that the hypothesis is true. It measures how well the hypothesis explains the
observed data.

The posterior probability P (H|E) is the updated probability of the hypothesis
after considering the new evidence. It combines the prior probability and the
likelihood to provide a revised estimate of the hypothesis’s probability.

The marginal likelihood P (E) is a normalizing constant that ensures the pos-
terior probabilities sum to one. It is the probability of the evidence under all
possible hypotheses and is computed by integrating or summing over the likeli-
hoods of all hypotheses.

Suppose we have a hypothesis H about the occurrence of an event, and we
observe new evidence E. We want to update our belief in H using Bayesian
inference.

• Let P (H) = 0.6 be the prior probability of H.

• Let P (E|H) = 0.7 be the likelihood of observing E given that H is true.
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• Let P (E) = 0.5 be the marginal likelihood of E.

Using Bayes’ theorem, the posterior probability P (H|E) is calculated as fol-
lows:

P (H|E) =
P (E|H) · P (H)

P (E)
=

0.7 · 0.6
0.5

= 0.84

Thus, the updated probability of H after observing E is 0.84.
In the continuous case, where the evidence and hypotheses are described

by continuous variables, Bayes’ theorem is expressed using probability density
functions (pdfs):

fH(h|E) =
fE(E|h) · fH(h)

fE(E)

where fH(h|E) is the posterior density of the hypothesis given the evidence,
fE(E|h) is the likelihood function, fH(h) is the prior density, and fE(E) is the
marginal density of the evidence.

In the multivariate case, where multiple hypotheses and evidence variables
are considered, Bayes’ theorem extends to joint probability distributions. Sup-
pose we have a set of hypotheses {Hi} and evidence {Ej}. The posterior prob-
ability for a specific hypothesis Hi given the evidence {Ej} is:

P (Hi|{Ej}) =
P ({Ej}|Hi) · P (Hi)

P ({Ej})
where P ({Ej}) is the joint marginal likelihood of the evidence, computed as:

P ({Ej}) =
∑
i

P ({Ej}|Hi) · P (Hi)

Bayesian inference provides a robust framework for updating the probabil-
ity of a hypothesis based on new evidence. By incorporating prior knowledge
and the likelihood of the observed data, Bayesian methods offer a principled ap-
proach to probabilistic reasoning and decision making under uncertainty. This
technique is widely applicable in various domains, including data fusion, where
it plays a crucial role in integrating information from diverse sources to improve
accuracy and reliability.

2.2 Case Study: Multidimensional Risk Assessment Using
Bayesian Inference

In this case study, we analyze the risk to both structures and people in an area
that has already been affected by an earthquake. The earthquake has resulted in
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a specific number of buildings reaching the D3 damage status. We aim to calcu-
late the multidimensional risk using Bayesian Inference by integrating observed
data on structural damage and various human risk factors, such as the number
of people with disabilities, the number of elderly people, types of disabilities, the
number of families with low income, and the number of large families.

2.2.1 Variables and Definitions

Consider the definitions as follows:

• Structural Risk (S): The number of buildings (B) that have achieved the
D3 damage status.

• Human Risk Factors:
D: Number of people with disabilities.
E: Number of elderly people.
T : Types of disabilities among the disabled population.
L: Number of families with low income.
F : Number of large families (with more than three children).

Given that the earthquake has already occurred, we will use the observed
data directly without needing to predict future values. Bayesian Inference will
allow us to update our understanding of the risk based on this observed data.

2.2.2 Bayesian Inference

After the earthquake, we can use Bayesian Inference to update our beliefs about
the overall risk based on the observed data. We start with our prior knowledge
about each risk factor and combine it with the observed data to calculate the
posterior probabilities, which reflect the updated risk assessment. In particular:

• Prior Probabilities:
P (S): Prior probability distribution of structural risk.
P (D): Prior probability distribution of the number of people with dis-

abilities.
P (E): Prior probability distribution of the number of elderly people.
P (T ): Prior probability distribution of types of disabilities.
P (L): Prior probability distribution of the number of low-income fam-

ilies.
P (F ): Prior probability distribution of the number of large families.
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• Observed Data:

OS: Observed number of buildings with D3 damage.

OD: Observed number of people with disabilities.

OE: Observed number of elderly people.

OT : Observed types of disabilities.

OL: Observed number of low-income families.

OF : Observed number of large families.

• Posterior Probabilities:

P (S|OS): Posterior probability of structural risk given the observed
data.

P (D|OD): Posterior probability of the number of people with disabili-
ties given the observed data.

P (E|OE): Posterior probability of the number of elderly people given
the observed data.

P (T |OT ): Posterior probability of types of disabilities given the ob-
served data.

P (L|OL): Posterior probability of the number of low-income families
given the observed data.

P (F |OF ): Posterior probability of the number of large families given
the observed data.

2.2.3 Calculation of Multidimensional Risk

We start by defining the prior distributions for each variable based on historical
data and expert knowledge. Let’s assume we have the following priors:

• P (S) ∼ Normal(µS, σ
2
S)

• P (D) ∼ Poisson(λD)

• P (E) ∼ Poisson(λE)

• P (T ) ∼ Multinomial(pT )

• P (L) ∼ Poisson(λL)

• P (F ) ∼ Poisson(λF )
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Next, we use the observed data from the earthquake event, for example:
OS = 12, OD = 25, OE = 18, OT = (10, 8, 5, 2), OL = 12, and OF = 9.

Using Bayes’ theorem, we update the prior probabilities with the observed
data to obtain the posterior probabilities. For example, the posterior probability
of structural risk is calculated as:

P (S|OS) =
P (OS|S) · P (S)

P (OS)
.

Given the normal distribution assumption for structural risk, the likelihood
P (OS|S) is also a normal distribution centered around the observed value OS =
12. We then update the mean and variance based on the observed data and the
prior distribution.

Similarly, for the Poisson-distributed human risk factors, we update the rate
parameters (λ) using the observed counts, yielding new posterior distributions.

2.2.4 Example Calculation

Assume the following prior distributions and observed data: P (S) ∼ Normal(10, 22),
P (D) ∼ Poisson(20), P (E) ∼ Poisson(15), P (T ) ∼ Multinomial(0.4, 0.3, 0.2, 0.1)
for four types of disabilities, P (L) ∼ Poisson(10), P (F ) ∼ Poisson(8).

Observed data are as follows: OS = 12, OD = 25, OE = 18, OT = (10, 8, 5, 2),
OL = 12, and OF = 9.

Using Bayesian updating, we calculate the posterior probabilities for each
risk factor. For instance, the posterior probability for structural risk might be as
follows:

P (S|OS) =
P (OS|S) · P (S)

P (OS)
.

Given the normal distribution assumption for structural risk, the likelihood
P (OS|S) is also a normal distribution centered around the observed value OS =
12. We then update the mean and variance based on the observed data and the
prior distribution.

Similarly, for the Poisson-distributed human risk factors, we update the rate
parameters (λ) using the observed counts, yielding new posterior distributions.

2.2.5 Combined Multidimensional Risk

To assess the overall multidimensional risk, we combine the posterior probabili-
ties of all risk factors. This integration can be represented as a multidimensional
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distribution that considers both structural and human factors, allowing for a
comprehensive risk assessment.

In this case study, Bayesian Inference was used to integrate observed data
on structural damage and various human risk factors to assess the multidi-
mensional risk after an earthquake. This approach allows us to update our
understanding of the overall risk based on observed data, providing a robust
framework for post-event risk assessment and decision-making. By combining
information from multiple sources, we can obtain a more accurate and nuanced
understanding of the impacts of the earthquake, leading to better resource al-
location and mitigation strategies.

3 Kalman filtering

3.1 Introduction

Kalman filtering, introduced by Rudolf E. Kálmán in 1960, is a powerful math-
ematical technique used for estimating the state of a dynamic system from a
series of noisy measurements. The filter is designed to operate in real-time
and is extensively utilized in various applications, including navigation, signal
processing, control systems, and data fusion. This introduction aims to pro-
vide a comprehensive understanding of Kalman filtering, its principles, and its
relevance to data fusion.

The Kalman filter operates on a recursive estimation framework. At its core,
it combines predictions from a mathematical model of the system with actual
measurements to produce estimates that are more accurate than those obtained
from either the model or the measurements alone. This process involves two
key stages: prediction and update.

• Prediction Stage In the prediction stage, the filter uses the current state
estimate and the system’s dynamic model to predict the state at the next
time step. The dynamic model is typically represented by linear equations,
though extensions of the Kalman filter, such as the Extended Kalman Filter
(EKF) and Unscented Kalman Filter (UKF), handle nonlinear systems. The
predicted state estimate and its associated uncertainty (error covariance)
are calculated in this stage.

• Update Stage - In the update stage, the filter incorporates new measure-
ments to correct the predicted state. This involves calculating the Kalman
gain, which determines the weighting between the predicted state and
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the new measurement. The state estimate and its uncertainty are then
updated based on the new measurement and the Kalman gain.

The Kalman filter is mathematically described by a set of equations that
govern the prediction and update stages. These equations are derived from the
principles of Bayesian inference and linear algebra.

Prediction equations are as follows. Let xk represent the state vector at time
step k, and Pk denote the error covariance matrix associated with the state
estimate. The dynamic model of the system is given by:

xk|k−1 = Fk−1xk−1|k−1 + Bk−1uk−1 +wk−1

Pk|k−1 = Fk−1Pk−1|k−1F⊤
k−1 +Qk−1

Here, Fk−1 is the state transition matrix, Bk−1 is the control input matrix, uk−1

is the control input vector, wk−1 is the process noise with covariance Qk−1, and
xk|k−1 represents the predicted state estimate.

When a new measurement zk is available, the update equations correct the
predicted state estimate. The measurement model is given by:

zk = Hkxk + vk

yk = zk −Hkxk|k−1

Sk = HkPk|k−1H⊤
k + Rk

Kk = Pk|k−1H⊤
k S

−1
k

xk|k = xk|k−1 + Kkyk

Pk|k = Pk|k−1 − KkHkPk|k−1

Here, Hk is the measurement matrix, vk is the measurement noise with co-
variance Rk, yk is the measurement residual (innovation), Sk is the innovation
covariance, Kk is the Kalman gain, and xk|k represents the updated state esti-
mate.

Data fusion involves combining information from multiple sources to achieve
a more accurate and reliable understanding of a system. Kalman filtering is
particularly well-suited for data fusion due to its ability to recursively process
noisy measurements and produce optimal estimates.
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While the standard Kalman filter assumes linear models and Gaussian noise,
many real-world systems exhibit nonlinearity and non-Gaussian noise. To ad-
dress these challenges, several extensions of the Kalman filter have been devel-
oped:

• Extended Kalman Filter (EKF): - The EKF linearizes the nonlinear sys-
tem dynamics and measurement models around the current state esti-
mate. It then applies the standard Kalman filter equations to the linearized
models. - This approach works well for mildly nonlinear systems but can
introduce errors if the system exhibits significant nonlinearity.

• Unscented Kalman Filter (UKF): - The UKF uses a deterministic sam-
pling technique known as the unscented transform to approximate the
state distribution. It avoids linearization and provides more accurate es-
timates for highly nonlinear systems. - By propagating a set of sigma
points through the nonlinear functions, the UKF captures the true mean
and covariance of the state distribution more effectively than the EKF.

• Particle Filter: - Particle filters, also known as sequential Monte Carlo
methods, represent the state distribution using a set of particles. Each
particle represents a possible state of the system, and the filter updates
the particles based on the measurements. - This approach can handle
highly nonlinear and non-Gaussian systems but is computationally more
intensive than Kalman filters.

Kalman filtering is a a robust and efficient method for estimating the state
of dynamic systems. Its recursive nature, mathematical rigor, and ability to
handle various types of data make it indispensable in fields. The extensions of
the Kalman filter, such as the EKF and UKF, further enhance its applicability to
complex, nonlinear systems. By using Kalman filtering, we can achieve accurate
and reliable multidimensional risk estimates.

3.2 Case Study: Multidimensional Risk Assessment Using
Kalman Filtering

In this case study, we analyze the risk to both structures and people in an
area that has already been affected by an earthquake using Kalman filtering.
The earthquake has resulted in a specific number of buildings reaching the D3
damage status. We aim to calculate the multidimensional risk by integrating
observed data on structural damage and various human risk factors, such as
the number of people with disabilities, the number of elderly people, types of
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disabilities, the number of families with low income, and the number of large
families. This approach will utilize the Kalman filter to provide real-time updates
and more accurate risk assessments.

3.2.1 Variables and Definitions

Variables are as follows:

• Structural Risk (S): The number of buildings (B) that have achieved the
D3 damage status.

• Human Risk Factors:

D: Number of people with disabilities.

E: Number of elderly people.

T : Types of disabilities among the disabled population.

L: Number of families with low income.

F : Number of large families (with more than three children).

Given that the earthquake has already occurred, we will use the observed
data directly and update our risk assessment in real-time as new data becomes
available.

3.2.2 Kalman Filtering

The Kalman filter operates through a cycle of prediction and update stages,
which will be adapted to our specific variables.

• Prediction Stage:

State Vector (xk): Includes all risk factors.

xk =


Sk

Dk

Ek

Tk

Lk

Fk


State Transition Model (Fk): Describes how the state evolves over time.

Fk = I (Identity Matrix)
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-

Control Input Model (Bk): Describes external influences (assumed zero
here).

uk = 0

Process Noise (wk): Represents uncertainties in the model, with co-
variance matrix Qk.

The predicted state and error covariance are:

xk|k−1 = Fk−1xk−1|k−1

Pk|k−1 = Fk−1Pk−1|k−1F⊤
k−1 +Qk−1

• Update Stage:

Measurement Vector (zk): Represents observed data.

zk =


OS

OD

OE

OT

OL

OF


Measurement Model (Hk): Maps the true state to the observed data

(identity matrix for direct observation).

Hk = I

Measurement Noise (vk): Represents uncertainties in the measure-
ments, with covariance matrix Rk.

The innovation (residual) and innovation covariance are:

yk = zk −Hkxk|k−1

Sk = HkPk|k−1H⊤
k + Rk

The Kalman gain, updated state estimate, and updated error covariance are:

Kk = Pk|k−1H⊤
k S

−1
k

xk|k = xk|k−1 + Kkyk

Pk|k = Pk|k−1 − KkHkPk|k−1
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3.2.3 Observed Data and Initial Conditions

Assume the following initial conditions and observed data:
Prior Estimates:

x0 =


10
20
15
8
10
7


Here, the state vector components could represent:

• x0,1: Initial estimate of structural damage.

• x0,2: Initial estimate of the number of people with disabilities.

• x0,3: Initial estimate of the number of elderly people.

• x0,4: Initial estimate of types of disabilities (aggregated score).

• x0,5: Initial estimate of the number of families with low income.

• x0,6: Initial estimate of the number of large families.

The error covariance matrix represents the initial uncertainty associated with
each element of the state vector. This matrix is typically initialized as a diagonal
matrix, where each diagonal element represents the variance (uncertainty) of
the corresponding state variable.

P0 =


22 0 0 0 0 0
0 52 0 0 0 0
0 0 42 0 0 0
0 0 0 32 0 0
0 0 0 0 32 0
0 0 0 0 0 32


This means that the variance (uncertainty) in the initial estimate of structural

damage is 22 = 4; the variance in the initial estimate of the number of people
with disabilities is 52 = 25. And so on for the other state variables.
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Observed Data (Post-Earthquake):

z1 =


12
25
18

(10, 8, 5, 2)
12
9


3.2.4 Kalman Filter Implementation

Prediction Stage:
x1|0 = F0x0 = x0

P1|0 = F0P0F⊤
0 +Q0

Assume Q0 is a small diagonal matrix representing low process noise.
Update Stage:

y1 = z1 −H1x1|0

S1 = H1P1|0H⊤
1 + R1

Assume R1 is a diagonal matrix representing measurement noise covariance.
Calculate the Kalman gain:

K1 = P1|0H⊤
1 S

−1
1

Update the state estimate:

x1|1 = x1|0 + K1y1

Update the error covariance:

P1|1 = P1|0 − K1H1P1|0

3.2.5 Results and Interpretation

Using the observed data and the Kalman filter equations, we obtain the updated
state estimates and error covariances. These provide us with the multidimen-
sional risk assessment, combining the structural risk and various human risk
factors. For example, after the update step, the state vector may be as follows:

x1|1 =


11.5
23
16.5

(9.5, 7.5, 5, 2)
11
8
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This updated state vector reflects the integrated risk assessment, incorporating
the new measurements and providing a more accurate and comprehensive view
of the situation post-earthquake.

In this case study, Kalman filtering was applied to integrate observed data on
structural damage and various human risk factors to assess the multidimensional
risk after an earthquake. The filter effectively combined predictions from the dy-
namic model with actual measurements, providing real-time updates and more
accurate risk assessments. This approach demonstrates the utility of Kalman
filtering in multidimensional risk assessment, enhancing decision-making and
resource allocation in post-disaster scenarios.

4 Dempster-Shafer Theory for Data Fusion

4.1 Introduction

The Dempster-Shafer Theory (DST), also known as the Theory of Evidence, is a
mathematical framework for modeling epistemic uncertainty—situations where
information is incomplete or imprecise. Developed by Arthur P. Dempster and
Glenn Shafer in the 1960s and 1970s, DST extends the classical probability the-
ory to provide a more flexible and nuanced way of handling uncertainty and com-
bining evidence from multiple sources. This introduction describes the funda-
mental concepts, mathematical formalism, and applications of Dempster-Shafer
Theory in the context of data fusion.

The core of Dempster-Shafer is the concept of belief functions, mass func-
tions, and the combination of evidence. Unlike traditional probability theory,
which assigns probabilities directly to events, DST operates by assigning belief
masses to sets of events, allowing for a representation of both uncertainty and
ignorance.

• Frame of Discernment Θ: The frame of discernment is the set of all
possible outcomes or hypotheses. For example, in a diagnostic system, Θ
might represent the set of possible diseases. Each element in Θ is mutually
exclusive and collectively exhaustive.

• Mass Function (Basic Probability Assignment, BPA): The mass func-
tion m : 2Θ → [0, 1] assigns a belief mass to each subset of Θ, including
the empty set. The sum of the masses of all subsets of Θ is 1:∑

A⊆Θ

m(A) = 1
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A mass m(A) represents the exact amount of belief that is committed to
the subset A and does not imply any belief in any of its subsets.

• Belief Function (Bel): The belief function Bel : 2Θ → [0, 1] measures
the total belief committed to a subset A:

Bel(A) =
∑
B⊆A

m(B)

where Bel(A) represents the degree of belief that the true state of the
world is contained within A.

• Plausibility Function (Pl): The plausibility function Pl : 2Θ → [0, 1] is
the complement of the belief in the complement of A:

Pl(A) = 1−Bel(¬A) =
∑

B∩A ̸=∅

m(B)

where Pl(A) represents the degree to which A is plausible, given the evi-
dence.

One of the most significant aspects of Dempster-Shafer Theory is Dempster’s
rule of combination. This rule combines two independent mass functions, m1

and m2, into a new mass function m. The combined mass function m is defined
as:

m(A) =
1

1−K

∑
B∩C=A

m1(B) ·m2(C)

where K is the conflict coefficient, representing the degree of conflict between
the two sources of evidence:

K =
∑

B∩C=∅

m1(B) ·m2(C)

The factor 1
1−K

normalizes the combined mass function to ensure that the total
mass is 1.

Dempster-Shafer Theory offers several advantages over traditional probabil-
ity theory, making it particularly useful for data fusion:

• Handling Uncertainty and Ignorance: DST can represent both uncertainty
(through belief and plausibility) and ignorance (through non-specific mass
assignments), providing a more comprehensive representation of uncer-
tainty.

19



• Flexibility: DST allows for partial belief in multiple hypotheses without re-
quiring prior probabilities, making it flexible in situations where information
is sparse or ambiguous.

• Conflict Resolution: Dempster’s rule of combination effectively resolves
conflicts between different pieces of evidence, offering a systematic way
to integrate multiple sources of information.

Dempster-Shafer Theory is widely applied in various fields requiring data fusion,
where it enhances decision-making by combining evidence from diverse sources

The mathematical model is as follows. For a subset A ⊆ Θ, the belief and
plausibility functions are defined as:

Bel(A) =
∑
B⊆A

m(B)

Pl(A) =
∑

B∩A ̸=∅

m(B).

Given two mass functions m1 and m2 defined on the same frame of discernment
Θ, the combined mass function m using Dempster’s rule is:

m(A) =
1

1−K

∑
B∩C=A

m1(B) ·m2(C)

where the conflict coefficient K is:

K =
∑

B∩C=∅

m1(B) ·m2(C)

The normalization factor 1
1−K

ensures that the sum of the combined mass func-
tion is 1.

Dempster-Shafer Theory provides a robust and flexible framework for han-
dling and combining uncertain and imprecise information. Its ability to represent
both belief and plausibility, along with the systematic approach to combining ev-
idence, makes it a powerful tool for data fusion. The applications span various
fields including risk assessment, highlighting its versatility and effectiveness in
dealing with complex, real-world problems.

4.2 Multidimensional Risk Assessment Using Dempster-
Shafer Theory

In this case study, we aim to evaluate the multidimensional risk associated with
an earthquake that has caused significant damage to buildings and affected the
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population. We will use the Dempster-Shafer Theory (DST) to combine different
risk factors and assess the overall risk. The risk factors include the structural
damage to buildings and various human risk factors such as the number of
people with disabilities, the number of elderly people, the types of disabilities,
the number of families with low income, and the number of large families.

4.2.1 Scenario and Data

Assume the following observed data after an earthquake in a given area:

• Number of buildings (B) with D3 damage status: 12

• Number of people with disabilities (D): 25

• Number of elderly people (E): 18

• Types of disabilities (T): 10 mobility impairments, 8 visual impairments, 5
hearing impairments, 2 cognitive impairments

• Number of families with low income (L): 12

• Number of large families (F): 9

We will apply DST to combine these different data to obtain a multidimensional
risk assessment.

4.2.2 Steps of Dempster-Shafer Theory

DST uses the steps as follows:

1. Define the Frame of Discernment (Θ): The frame of discernment repre-
sents all possible states of the world we are interested in. In this case, it
includes:

S: Structural risk (damage to buildings);

H: Human risk factors (disabilities, elderly, low income, large families).

2. Assign Basic Probability Assignments (BPAs): We need to assign belief
masses to subsets of Θ based on the observed data. These assignments
represent our confidence in different states of the world.

3. Combine Evidence Using Dempster’s Rule: We will combine the BPAs from
different sources of evidence to obtain a comprehensive risk assessment.

Based on the observed data, we assign belief masses to different subsets of Θ:
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• Structural Risk (S): The number of buildings with D3 damage status indi-
cates a significant structural risk. We assign a high belief mass to S:

mS(S) = 0.8 (High belief in structural risk)

The remaining belief mass accounts for uncertainty:

mS(Θ) = 0.2 (Uncertainty)

• Human Risk Factors (H): The number of people with disabilities, elderly
people, and families with low income and large families indicate significant
human risk. We assign a high belief mass to H:

mH(H) = 0.75 (High belief in human risk)

The remaining belief mass accounts for uncertainty:

mH(Θ) = 0.25 (Uncertainty)

4.2.3 Combining Evidence

Using Dempster’s rule, we combine the BPAs from the structural risk and human
risk factors:

• Combination of BPAs: The combined mass function m is computed using:

m(A) =
1

1−K

∑
B∩C=A

mS(B) ·mH(C)

where the conflict coefficient K is:

K =
∑

B∩C=∅

mS(B) ·mH(C)

• Calculating Combined Masses: For the intersection S ∩ H = S ∪ H = Θ,
we have:

m(S ∩H) = 0.8× 0.75 = 0.6

For the intersection S ∩Θ = S, we have:

m(S ∩Θ) = 0.8× 0.25 = 0.2

For the intersection Θ ∩H = H, we have:

m(Θ ∩H) = 0.2× 0.75 = 0.15

For the intersection Θ ∩Θ = Θ, we have:

m(Θ ∩Θ) = 0.2× 0.25 = 0.05
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• Conflict CoefficientK: - There is no conflict since S and H are not disjoint:

K = 0

• Normalizing Combined Masses: The combined masses are already normal-
ized since K = 0. Therefore:

m(S) = 0.2, m(H) = 0.15, m(Θ) = 0.05, m(S ∩H) = 0.6

The combined mass function provides the following data: m(S) = 0.2,
there is a 20% belief in structural risk alone; m(H) = 0.15, there is a 15%
belief in human risk factors alone; m(S ∩H) = 0.6, there is a 60% belief
in the combined structural and human risk, indicating that both types of
risks are significant; m(Θ) = 0.05, there is a 5% uncertainty.

Using Dempster-Shafer Theory, we have combined structural damage and
various human risk factors to obtain a multidimensional risk assessment.
This approach allows us to handle uncertainty and provides a comprehen-
sive view of the risk situation after the earthquake. The results indicate a
significant combined risk, highlighting the importance of considering both
structural and human factors in post-disaster assessments.

5 Weighted Sum for Data Fusion

5.1 Introduction

Data fusion is the process of integrating multiple sources of information
to produce more consistent, accurate, and useful data than that provided
by any individual data source. Among the various techniques used for
data fusion, the weighted sum method is one of the simplest and most
intuitive. This method combines different pieces of information by assign-
ing weights to each source and summing the weighted values to produce
a final result. This introduction will explore the fundamental concepts,
mathematical formulation, advantages, and applications of the weighted
sum method in data fusion.

The weighted sum method for data fusion relies on the principle of assign-
ing importance or reliability to each data source through weights. These
weights reflect the confidence in each data source and are used to balance
the contributions of each piece of information in the final fusion result. In
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more detail, data Sources are the various pieces of information or mea-
surements that need to be fused. In practice, these typically come from
different sensors, databases, or experts. Weights are numerical values
assigned to each data source that reflect the relative importance or relia-
bility of the information provided by that source. The sum of the weights
is typically normalized to 1.

The final fused value (so-called weighted sum) is calculated as the sum of
the products of each data source and its corresponding weight. This can
be expressed as follows:

F =
n∑

i=1

wixi

where F is the fused result, xi is the value from the i-th data source, wi is
the weight assigned to the i-th data source, and n is the number of data
sources.

The weighted sum method can be formally described using the following
steps:

1. Data Representation: suppose we have n data sources, each provid-
ing a measurement xi (for i = 1, 2, . . . , n).

2. Weight Assignment: assign a weight wi to each data source such
that:

n∑
i=1

wi = 1

3. Weighted Sum Calculation: The aggregate result F is given by:

F =
n∑

i=1

wixi.

The weighted sum method offers several advantages, making it a popu-
lar choice for data fusion in many applications. First, the weighted sum
method is straightforward to understand and implement. Its simplicity
makes it accessible for a wide range of applications.

The method also allows for easy adjustment of weights1 to reflect changes
in the reliability or importance of different data sources. This flexibility is
valuable in dynamic environments where data quality may vary over time.

1Weights can also be set by using multi-criteria decision-making techniques. For example,
the next section describes the Analytic Hierarchy Process, one of the most widely used methods
to derive weights that reflects the importance of various criteria in real-world problems.
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Another advantage is that calculating the weighted sum is computationally
efficient, making it suitable for real-time applications where quick data
fusion is required.

Finally, the method provides an intuitive way to combine data, as the final
result is a weighted average that can be easily understood and interpreted.

The weighted sum method is widely used in various fields requiring data
fusion, including decision support systems where it can be used to com-
bine expert opinions, historical data, and real-time information to support
decision-making processes. This method is also effective when implement-
ing environmental monitoring systems often rely on data frommultiple sen-
sors to assess conditions such as air quality, water quality, and weather.
The weighted sum method helps integrate these diverse data sources.

5.2 Multidimensional Risk assessment using the
Weighted Sum Method

In this case study, we will evaluate the multidimensional risk associated
with an earthquake by applying the weighted sum method. We will com-
bine evidence from structural damage to buildings and various human risk
factors such as the number of people with disabilities, the number of el-
derly people, the types of disabilities, the number of families with low
income, and the number of large families.

Assume that after the earthquake, we have the following observed data:

– Number of buildings (B) with D3 damage status: 12

– Number of people with disabilities (D): 25

– Number of elderly people (E): 18

– Types of disabilities (T): 10 mobility impairments, 8 visual impair-
ments, 5 hearing impairments, 2 cognitive impairments

– Number of families with low income (L): 12

– Number of large families (F): 9

We will apply the weighted sum method to combine these risk factors into
a single multidimensional risk assessment.

First, we need to assign weights to each risk factor based on their relative
importance or impact on the overall risk. For this example, we will assume
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the following weights directly expressed by experts2:

– Structural damage (WB): 0.4

– Number of people with disabilities (WD): 0.2

– Number of elderly people (WE): 0.15

– Types of disabilities (WT ): 0.1

– Number of families with low income (WL): 0.1

– Number of large families (WF ): 0.05

The weights are chosen such that they sum up to 1:

WB +WD +WE +WT +WL +WF = 1

Before calculating the weighted sum, we need to normalize the data to
ensure that each risk factor is on a comparable scale. We will use a sim-
ple normalization method by dividing each value by the maximum value
observed for that factor. Suppose the maximum values for normalization
are as follows:

– Maximum number of buildings with D3 damage status: 20

– Maximum number of people with disabilities: 50

– Maximum number of elderly people: 30

– Maximum number of types of disabilities: 10 (maximum of total types
considered, here the sum is 25)

– Maximum number of families with low income: 20

– Maximum number of large families: 15

Normalized values (xi) are calculated as follows: xB = 12
20

= 0.6; xD = 25
50

=
0.5; xE = 18

30
= 0.6; xT = 25

25
= 1.0 (Total types considered are normalized

to 1); xL = 12
20

= 0.6; xF = 9
15

= 0.6.

Using the weights and normalized values, we calculate the weighted sum
to obtain the overall risk assessment:

F = WBxB +WDxD +WExE +WTxT +WLxL +WFxF

2Associating weights with criteria is a delicate task as it is difficult to generate a number
to express the level of danger that a specific criterion has compared to the others. The next
chapter explains how the Analytic Hierarchy Process can help with this task.
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Substituting the values:

F = (0.4×0.6)+(0.2×0.5)+(0.15×0.6)+(0.1×1.0)+(0.1×0.6)+(0.05×0.6)

F = 0.24 + 0.1 + 0.09 + 0.1 + 0.06 + 0.03

F = 0.62

The weighted sum method gives us a final risk score of 0.62. This score
represents the combined risk from structural damage and various human
factors. The closer the score is to 1, the higher the overall risk. In this
context, a score of 0.62 indicates a significant level of combined risk due
to the earthquake.

The weighted sum method provides a straightforward and efficient way to
combine different risk factors into a single multidimensional risk assess-
ment. By assigning appropriate weights to each factor and normalizing
the data, we can derive an overall risk score that reflects the relative im-
portance of each factor. In this case study, the weighted sum method ef-
fectively combines the structural damage and human risk factors, yielding
a comprehensive assessment of the earthquake’s impact. This method’s
simplicity and computational efficiency make it a valuable tool for real-time
risk assessment and decision-making in disaster management.

6 The Analytic Hierarchy Process (AHP) to
Infer Weights

The Analytic Hierarchy Process (AHP) is a structured technique for organiz-
ing and analyzing complex decisions, based on mathematics and psychol-
ogy. It was developed by Thomas L. Saaty in the 1970s and is used world-
wide in decision-making processes where multiple criteria are involved.
AHP helps decision-makers derive ratio scales from paired comparisons.
These scales are derived from the principal eigenvectors and eigenvalues
of comparison matrices, making it a rigorous and reliable method to de-
termine the weights of various criteria.

The AHP involves the following main steps:
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1. Define the Problem and Structure the Hierarchy: Identify the
goal of the decision-making process. Break down the problem into a
hierarchy of more easily comprehended sub-problems, each of which
can be analyzed independently. The hierarchy typically has three lev-
els: the goal, the criteria, and the alternatives.

2. PerformPairwise Comparisons and Build the ComparisonMa-
trix: Compare the criteria (and sub-criteria, if any) in pairs, judging
which element is more important and to what extent. Use a scale3

of 1 to 9, where 1 represents equal importance and 9 represents
extreme importance of one criterion over another.

3. Calculate the Weights (Eigenvalues): Construct a comparison
matrix where each element aij represents the relative importance of
criterion i over criterion j. Normalize the comparison matrix and cal-
culate the priority vector (eigenvector) by finding the principal eigen-
value. This vector provides the relative weights of the criteria.

4. Check Consistency: Calculate the Consistency Index (CI) and Con-
sistency Ratio (CR) to ensure that the judgments are consistent. A
CR of 0.1 or less is generally considered acceptable.

6.1 Deriving Weights for the Weighted Sum Method

Let us apply AHP to derive the weights for our case study involving the
risk factors after an earthquake.

1. Define the Problem and Structure the Hierarchy:
Goal: Determine the overall risk after an earthquake.
Criteria: Structural damage (B), number of people with disabilities

(D), number of elderly people (E), types of disabilities (T), number of
families with low income (L), and number of large families (F).

2. Pairwise Comparisons and Comparison Matrix: After performing the
pairwise comparisons for the six criteria using a scale of 1 to 9, sup-

3Saaty’s scale is the most widely used.
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pose the Pairwise Comparison Matrix A is as follows:

B D E T L F
B 1 3 5 7 5 9
D 1/3 1 3 5 3 7
E 1/5 1/3 1 3 3 5
T 1/7 1/5 1/3 1 3 5
L 1/5 1/3 1/3 1/3 1 3
F 1/9 1/7 1/5 1/5 1/3 1

3. Calculate the Weights:
Normalize the comparison matrix by dividing each element by the

sum of its column. Then, average the normalized values in each row
to get the priority vector.
The Normalized matrix is as follows:

B D E T L F
B 0.445 0.536 0.526 0.438 0.357 0.438
D 0.148 0.179 0.316 0.313 0.214 0.341
E 0.089 0.060 0.105 0.188 0.214 0.244
T 0.064 0.036 0.035 0.063 0.214 0.244
L 0.089 0.060 0.035 0.021 0.071 0.146
F 0.049 0.026 0.021 0.012 0.071 0.049

Priority vector (average of rows):

WB =
0.445 + 0.536 + 0.526 + 0.438 + 0.357 + 0.438

6
= 0.457

WD =
0.148 + 0.179 + 0.316 + 0.313 + 0.214 + 0.341

6
= 0.252

WE =
0.089 + 0.060 + 0.105 + 0.188 + 0.214 + 0.244

6
= 0.150

WT =
0.064 + 0.036 + 0.035 + 0.063 + 0.214 + 0.244

6
= 0.109

WL =
0.089 + 0.060 + 0.035 + 0.021 + 0.071 + 0.146

6
= 0.070

WF =
0.049 + 0.026 + 0.021 + 0.012 + 0.071 + 0.049

6
= 0.043

4. Check Consistency:
Calculate the consistency index (CI):

CI =
λmax − n

n− 1
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where λmax is the principal eigenvalue, and n is the number of criteria.
To calculate the principal eigenvalue in the context of the Analytic
Hierarchy Process (AHP) example, we first compute the sum of each
column:

Column Sum
1 1 + 1

3
+ 1

5
+ 1

7
+ 1

5
+ 1

9
≈ 2.515

2 3 + 1 + 1
3
+ 1

5
+ 1

3
+ 1

7
≈ 4.810

3 5 + 3 + 1 + 1
3
+ 1

3
+ 1

5
≈ 9.967

4 7 + 5 + 3 + 1 + 1
3
+ 1

5
≈ 16.633

5 5 + 3 + 3 + 3 + 1 + 1
3
≈ 15.333

6 9 + 7 + 5 + 5 + 3 + 1 ≈ 30.000

Then, we normalize the Pairwise Comparison Matrix:

Anorm =



1
2.515

3
4.810

5
9.967

7
16.633

5
15.333

9
30.000

1/3
2.515

1
4.810

3
9.967

5
16.633

3
15.333

7
30.000

1/5
2.515

1/3
4.810

1
9.967

3
16.633

3
15.333

5
30.000

1/7
2.515

1/5
4.810

1/3
9.967

1
16.633

3
15.333

5
30.000

1/5
2.515

1/3
4.810

1/3
9.967

1/3
16.633

1
15.333

3
30.000

1/9
2.515

1/7
4.810

1/5
9.967

1/5
16.633

1/3
15.333

1
30.000


We calculate the Priority Vector (Principal Eigenvector)

w =


0.457
0.252
0.150
0.109
0.070
0.043


and the Principal Eigenvalue (λmax)

Aw =


1 3 5 7 5 9
1
3

1 3 5 3 7
1
5

1
3

1 3 3 5
1
7

1
5

1
3

1 3 5
1
5

1
3

1
3

1
3

1 3
1
9

1
7

1
5

1
5

1
3

1




0.457
0.252
0.150
0.109
0.070
0.043

 ≈


2.742
1.505
0.891
0.651
0.412
0.251


Next, we divide each element of Aw by the corresponding element
of w:
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2.742
0.457
1.505
0.252
0.891
0.150
0.651
0.109
0.412
0.070
0.251
0.043

 ≈


6.00
5.97
5.94
5.97
5.89
5.84


Finally, we calculate the average of these values to obtain λmax:

λmax =
6.00 + 5.97 + 5.94 + 5.97 + 5.89 + 5.84

6
≈ 5.935

Thus, the principal eigenvalue (λmax) for this pairwise comparison ma-
trix is approximately 5.935.

We then have to calculate the consistency ratio (CR):

CR =
CI

RI

where RI is the random index, which depends on n.
Given n = 6, RI = 1.24. If CI ≤ 0.1, the consistency is acceptable.

6.2 Application to the Case Study

With the derived weights:

– Structural damage (WB): 0.457
– Number of people with disabilities (WD): 0.252
– Number of elderly people (WE): 0.150
– Types of disabilities (WT ): 0.109
– Number of families with low income (WL): 0.070
– Number of large families (WF ): 0.043

we can apply the weighted sum calculation for the case study as follows:
Normalized values:

xB = 0.6,

xD = 0.5,

xE = 0.6,

xT = 1.0,

xL = 0.6,

xF = 0.6
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Calculate the weighted sum:

F = (0.457×0.6)+(0.252×0.5)+(0.150×0.6)+(0.109×1.0)+(0.070×0.6)+(0.043×0.6)

F = 0.2742 + 0.126 + 0.09 + 0.109 + 0.042 + 0.0258

F = 0.667

The overall risk score of 0.667 indicates a significant combined risk from
both structural damage and human factors. This score, derived using the
AHP to determine appropriate weights, provides a more structured and
justified assessment of the risk, ensuring that each factor’s contribution is
accurately reflected in the final result.

The Analytic Hierarchy Process (AHP) offers a robust method for deter-
mining the weights of criteria in the weighted sum method for data fusion.
By structuring the problem, performing pairwise comparisons, calculat-
ing weights, and checking consistency, AHP ensures that the weights are
derived systematically and reflect the relative importance of each crite-
rion. This method enhances the reliability and accuracy of the final risk
assessment, making it a valuable tool in multidimensional risk analysis,
especially in scenarios involving complex decision-making processes like
post-earthquake evaluations.

7 Comparison and concluding remarks

The comparison of various data fusion methods reveals a range of strengths
and weaknesses, especially in the context of our case study on assessing
multidimensional risk post-earthquake. Bayesian inference, Kalman filter-
ing, Dempster-Shafer theory, and the weighted sum method each offer
distinct approaches to integrating diverse risk factors, such as structural
damage and human vulnerability, into a comprehensive risk assessment.

Bayesian inference excels in incorporating prior knowledge and updating
risk estimates with new data, providing a probabilistic framework that ef-
fectively manages uncertainty. This method is particularly valuable when
historical data and expert knowledge are available, enabling a dynamic risk
assessment that evolves with additional information. However, Bayesian
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inference can be computationally intensive and requires accurate prior dis-
tributions, which may be challenging to determine in practice.

Kalman filtering offers a robust solution for real-time data fusion, particu-
larly suitable for environments where continuous monitoring and updates
are crucial. It is highly efficient in processing noisy data and providing
real-time estimates of risk. Nevertheless, Kalman filtering assumes lin-
earity and Gaussian noise, which may not always hold true in complex,
multidimensional risk scenarios. The method’s effectiveness diminishes
when these assumptions are violated, potentially leading to less accurate
risk assessments.

Dempster-Shafer theory provides a powerful framework for handling un-
certainty and combining evidence from multiple sources, offering a flexible
approach that can accommodate incomplete and imprecise information.
This theory’s ability to manage conflicting evidence makes it particularly
useful in situations where data sources may be unreliable or contradic-
tory. However, the computational complexity of Dempster-Shafer theory
can be a drawback, especially in large-scale applications where numerous
variables and pieces of evidence need to be combined.

The weighted sum method, complemented by the Analytic Hierarchy Pro-
cess (AHP) for determining weights, is straightforward and intuitive. It
allows for the explicit inclusion of expert judgment in assigning relative
importance to different risk factors. This method is computationally ef-
ficient and easy to implement, making it suitable for initial assessments.
However, the simplicity of the weighted sum approach may overlook the
interactions between variables and fail to capture the nuances of complex
risk scenarios. The determination of weights through AHP relies heavily on
subjective judgments, which can introduce bias if not carefully managed.

In conclusion, each data fusion method has its advantages and limita-
tions in the context of multidimensional risk assessment post-earthquake.
Bayesian inference is ideal for scenarios with rich historical data and the
need for probabilistic updates, while Kalman filtering shines in real-time ap-
plications with linearity and Gaussian noise assumptions. Dempster-Shafer
theory is unparalleled in managing uncertainty and conflicting evidence, al-
beit at a computational cost. The weighted sum method, with AHP-derived
weights, offers simplicity and ease of implementation but may oversimplify
complex interactions.

The most appropriate method for our multidimensional risk assessment
framework will be selected based on the findings of a pilot study using
actual data from existing areas. This empirical evaluation will help optimize
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the framework, ensuring that the chosen method aligns with the practical
realities and specific needs of the case study. By rigorously testing these
methods in a real-world context, we aim to develop a robust and reliable
risk assessment tool that effectively integrates the diverse dimensions of
risk associated with earthquakes.
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