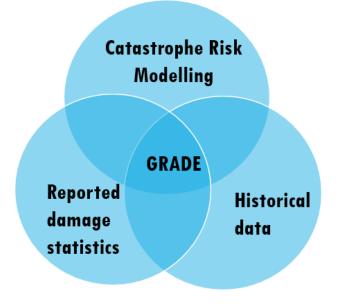
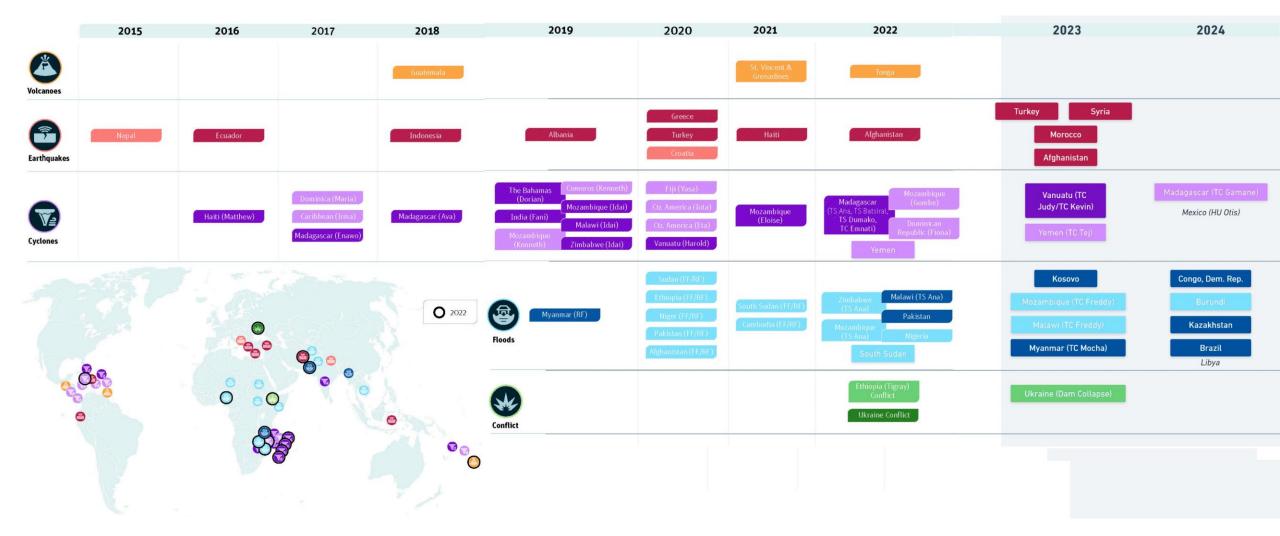
Damage Assessment Disrupted: Innovations of the GRADE methodology

November 15th 2024



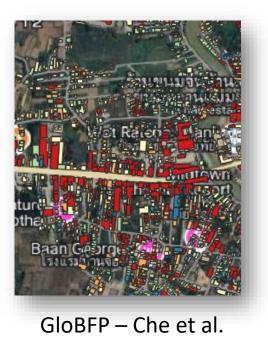
Many urgent questions arise following a disaster:

- **How** do we assess damages?
- Where are the damages distributed?
- **What** is the socio-economic impact?



Global RApid Post-Disaster Damage Estimation (GRADE)

GFDRR THE WORLD BANK



Determining the exposure

Using a combination of the following exposure datasets:

Google Al
Open Buildings

GFDRR THE WORLD BANK

GFDRR

FEBRUARY 20, 2023

Source: https://turkiye.un.org/en/219067-un-supports-rescue-and-relief-efforts-turkiye

Global Rapid Post-Disaster Damage Estimation (GRADE) Report

February 6, 2023 Kahramanmaraş Earthquakes

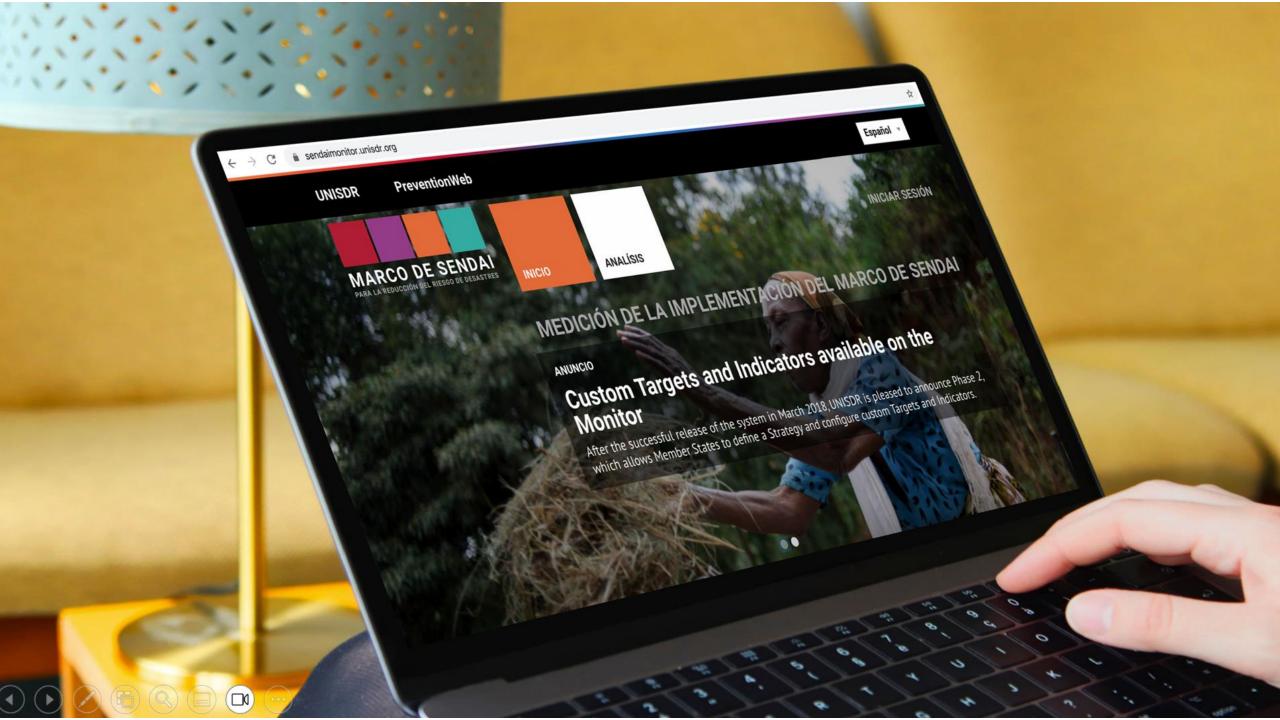
Türkiye Report

- At least 15 hospitals have suffered partial or severe damage, with damage assessments still ongoing¹⁶. Hospitals or hospital wings with risk of collapse have been evacuated by emergency services, with patients referred to facilities across the country and field hospitals established to provide continuity of care.
- The minimum expected direct damages for the most affected provinces are shown below for the key sectors: residential (housing), non-residential buildings¹⁷, and infrastructure¹⁸. Estimates cover buildings and contents; however, the analysis does not include costs associated with humanitarian and emergency response, or the losses associated with economic flows (e.g. business interruption). Moreover, damage assessments are ongoing in the affected areas

Table 1: Estimate of the direct damages by sector and province in absolute values (in USS millions). This includes the 11 Provinces which were named as "Disaster Areas" by the Government of Türkiye, plus all other Provinces which experienced damage.

Province	Desidential			Total				
Province	Residential	Non-Residential	Infrastructure	Median	Lower	Upper		
HATAY	6,601	3,516	3,516 2,331 12,448 11,2		11,236	13,643		
KAHRAMANMARAS	3,182	1,609	1,040	5,831	5,037	6,720		
GAZIANTEP	2,285	1,516	1,066	4,867	3,907	5 ,996		
MALATYA	1,493	660	450	2,604	2,105	3,197		
ADIYAMAN	1,190	525	295	2,011	1,714	2,372		
ADANA	915	475	394	1,783	1,308	2,352		
DIYARBAKIR	883	518	315	1,716	1,283	2,296		
OSMANIYE	654	453	251	1,358	1,084	1,716		
SANLIURFA	447	273	137	856	632	1,144		
ELAZIG	127	61	52	240	160	474		
KILIS	88	37	37 26 15		116	199		
MERSIN	58	15	32	105	36	159		
MARDIN	27	7	9	9 42		73		
KAYSERI	22	10	7	40	13	104		
SIVAS	23	9	5	37	22	50		
NIGDE	23	4	9	9 37		66		
BINGOL	15	2	5 2		1	40		
OTHER	1	0	0 0 2		1	147		
TOTAL	18,036	9,691	6,424	34,151	28,665	40,751		

¹⁶ WHO Flash Appeal


¹⁷ Non-residential buildings include buildings that are private or public, commercial (offices, hotels, trade/retail, etc.), educational, hospitals and clinics/health centers, public administration, and industrial/warehouses.
¹⁸ Infrastructure covers roads, bridges, ports, airports, railways, embankments, culverts as well as underground infrastructure.

- The Problem: How to understand, evaluate and interpret existing damage assessments in EU countries?
- The Solution: DSS Platform
- Impact:
 - Climate Change & Future Trends in Risk
- **Conclusions:** Analytics & Benchmarking for Better Decision Making

GFDRR (The world bank

Impacts & Benefits of GRADE

- Conducted over 70 GRADE • assessments since 2015.
- Allow the World Bank and partners to determine appropriate levels of financial and TA and develop WB **Operations**.
- Supports disaster response, • recovery plans, financing, and donor coordination.

Historical damage data

2.0 3.0 4.0 5.0 6.0 Depth (m)

Vulnerability/Built

Data

Belgium

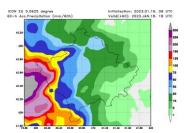
Denmark

Germany

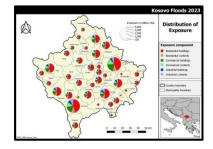
100

80

40


20

1.0


8 60

ge

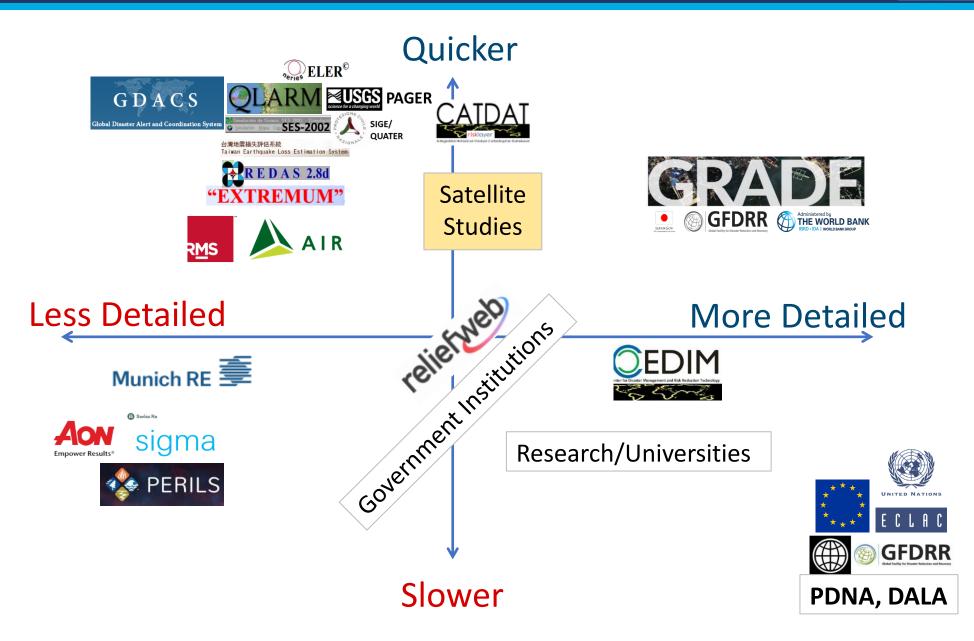
Oa

Event scientific data

Census Socioeconomic data

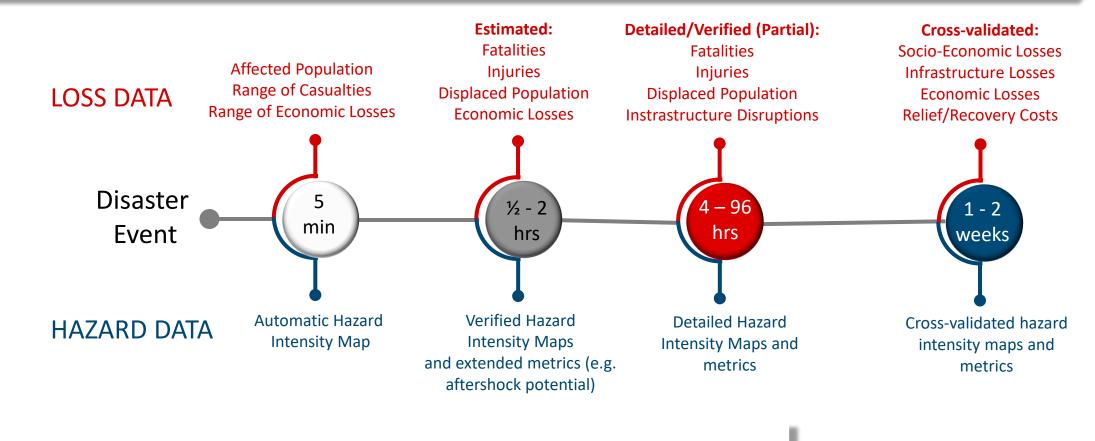
Czech Republic The Netherlands Switzerland ---- United Kingdom

D-RAS



Integrating climate and disaster risk info.

Provide an analytical framework for assessing climate and disaster impacts on macroeconomic, poverty, and welfare indicators.

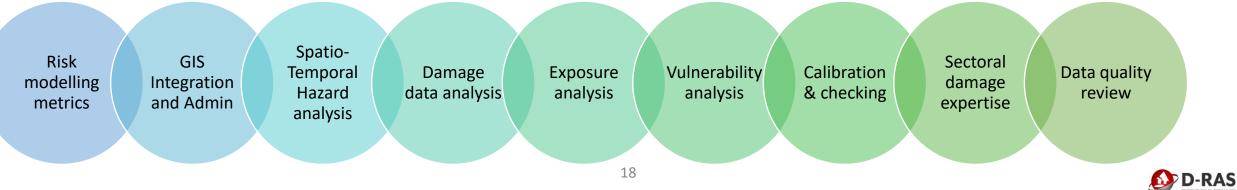


Timeline for production of hazard and loss data

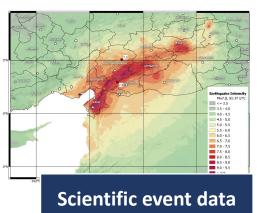
1st level analysis (automatic detection, trigger models, outputs as most likely ranges)

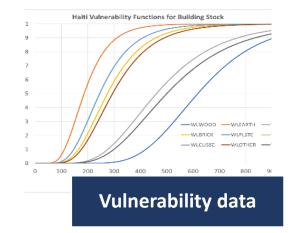
2nd level analysis (manual verification, updated models, outputs as absolute values)

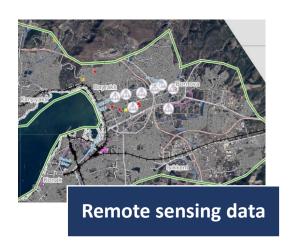
3rd level analysis (detailed analysis, model cross checking)

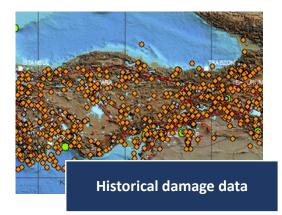

4th level analysis (detailed analysis with extended parameters and verification across multiple sources)

- Main Portals
 - GDACS (key links, basic impacts and modelling, maps, media links)
 - RSOE EDIS
 - Remote Sensing (UNOSAT, COPERNICUS, SERTIT etc.) Disasters Charter
 - ReliefWeb, IFRC Alertweb, GLOFAS, IDMC etc.
 - PDC Meteoalarm, ARISTOTLE etc.
 - Facebook, Google Crisis Response, NGOs
 - Ministry, Govt, National Portal sources
 - Engineering and Ground Reports, Universities
 - Twitter/Instagram/FB
 - Online news articles & web scraping with manual engineering model.

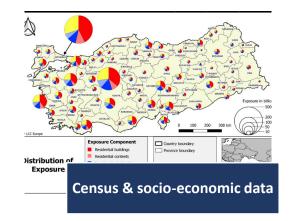

GFDRR (A the world bank

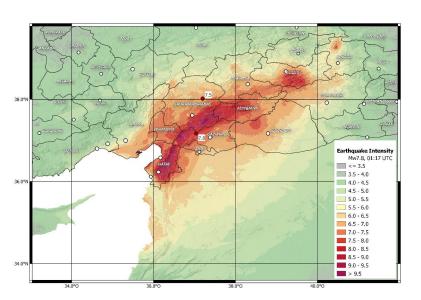

Some GRADEs related to Europe

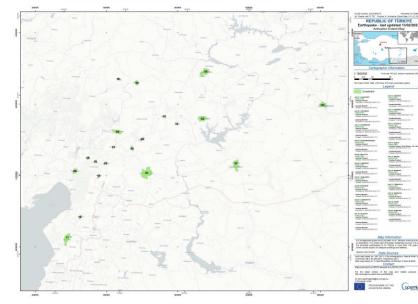

Date	Country - Event	Туре	Report/ Note	PDNA/DALA	Hazard types	Innovations and additional tasks
2019.11	Albania - Durrës, earthquake	EQ	Full GRADE	PDNA	Ground shaking	understanding exposures & vulnerability of socialist era building stock; received recognition from EU
2020.03	Croatia - Zagreb earthquake	EQ	GRADE Note	no	Ground shaking	Not a full GRADE
2020.11	Turkey - Samos Island earthquake	EQ	Full GRADE	National Assessment	Ground shaking & Tsunami	tsunami run-up model & mapping of major RC building collapses (and casualties related to these)
2020.11	Greece - Samos Island earthquake	EQ	Full GRADE	National Assessment	Ground shaking & Tsunami	tsunami run-up model
2022.04	Ukraine - Conflict & Crisis	Conflict	Full GRADE	RDNA	Conflict	
2022.04	Ukraine - Conflict (& Dam break)	FL	GRADE Note		Floods	
2023.01	Kosovo - Floods	FL	GRADE Note	no	Floods	
2023.02	Turkey - Kahramanmaras earthquakes - Turkey	EQ	Full GRADE	no	Ground shaking	Composite ShakeMap for mainshock and 2 aftershocks



- Comparison of past risk studies
- Collection of damage data statistics
- Comparison with past events
- Comparison with asset values

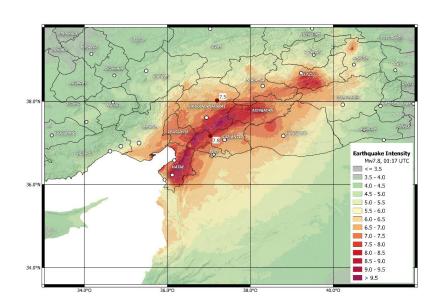




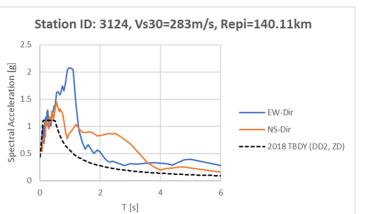


+ spatio-temporal scale + much calibration

- Each portal / rapid assessment source looks at the disaster scale very differently.
- What is the detail needed on the hazard side are secondary effects covered?
- In what way is the pre-disaster state taken into account?
- Are the damages static or dynamic in terms of the reporting?


What data?

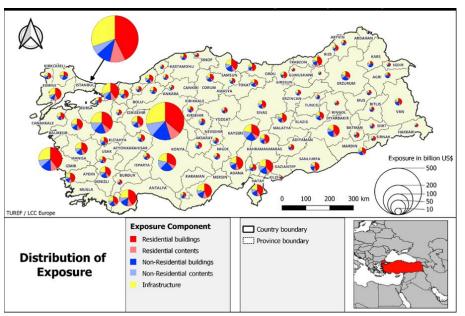
- Extent affected
- All hazards covered?
- Does the portal cover all damaged and undamaged locations?
- Temporal resolution
- Spatial resolution


vs. 7328 engineers assessing 3 million buildings in 8 days.

- Very dependent on hazard and location.
- Each portal looks at scale very differently.
- What is the detail needed?

What data?

- Station Data (Weather, Seismic, Water etc.)
- Other sensor data
- Models and methods
- Knowledge as to what parameters are important
- Secondary Hazard Data
- GIS, Spatio-temporal.



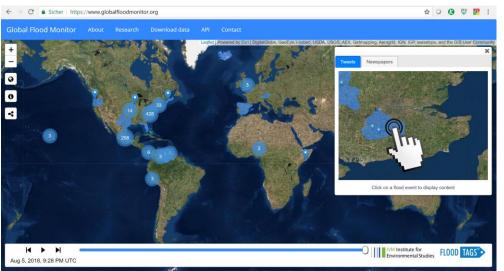
Benchmarking Exposure, Socioeconomic and Building Data

What data?

- Household Data
- Historic Census data
- Survey Data
- Population Data
- Critical & Sectoral
 Data (Schools, Health)
- OSM, open data
- Competent GIS teams

Which portals use pre-existing data? i.e. GDACS with Population; PDC and PAGER with basic exposed capital?

What data?


GFDRR

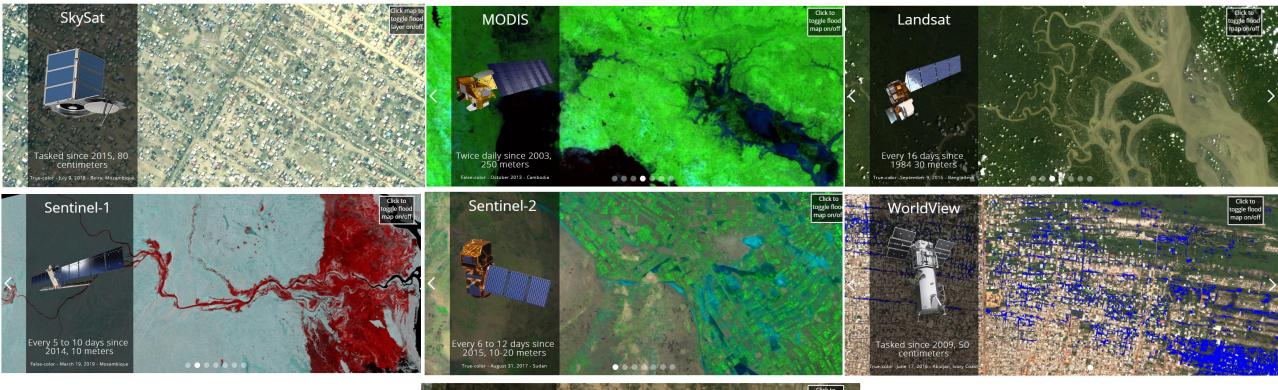
- Building statistics data
- Socioeconomic data
- Welfare data
- Local data
- Existing Studies
- GDP and economic data

Criteria for comparison: Social Media and Al products

- Many portals exist with aggregation of news feed data (not much set criteria).
- GDACS, and a number of others bring data directly in.
- Number of AI and automated products: scale and applicability.

What data?

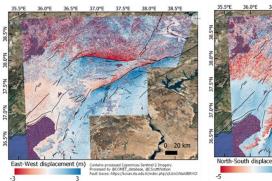
GFDRR (A) THE WORLD BANK

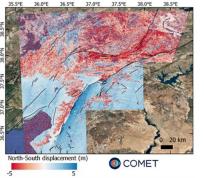

- Relevant Social Media Feeds (+ Videos)
- Geolocation data
- Temporal data

۲

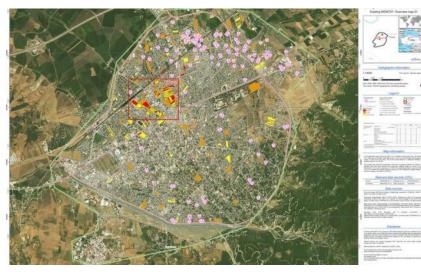
- <u>Misinformation checks</u>
- Official Govt. Feeds List
 - Official Hazard, Exposure, Vulnerability and Post-Disaster Feeds

Remote Sensing

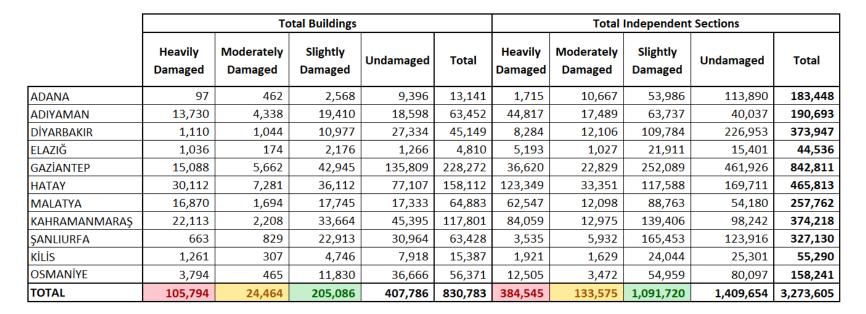




Criteria for comparison: Remote Sensing


Portals such as Unosat, GDACS, Copernicus etc.

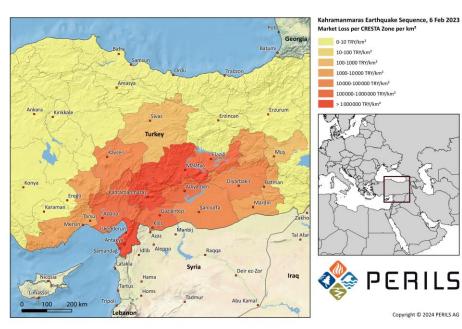
Damage Proxy - NASA via ALOS-2, PALSAR-2, Landsat 9, OLI-2


What data?

- Checks of Satellite Products
- Other sensor data
- Drone data
- Fly-over data
- Pre-event and Postevent data
- Change analysis products

Criteria for comparison: Vulnerability and Damage Data

- Damage Surveys
- Past studies on relevant buildings + infrastructure
- Damageability studies
- Post-disaster ground based studies
- Photo + Video
 Damage Assessment evidence.

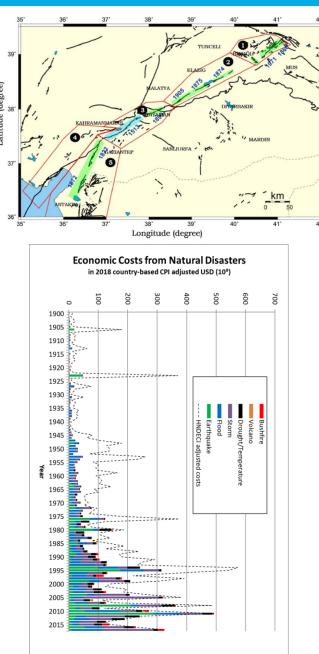

Fake news	Knowledge of what data are from past events vs. current event.							
Independent Auditing information	Combining official source data with initial damage reports to adapt loss functions Auditing of the overestimation or underestimation bias in media sources							
Exposure Estimates for upper limits	Affected Population, Economic Sectors, Critical Infrastructure, Repair ratios, Displaced Population							
Risk modelling GIS Hazard analysis	Damage data analysisExposure analysisVulnerability analysisCalibration & checkingSectoral damage expertiseData quality review							

Criteria for comparison: Economic Considerations

Important: Damage Cost Data for components

- EU Horizon Projects
- Databases such as SERA-EU, PIK, etc.
- Definitions are important from each tool (similarly for damage states) – i.e.
 Insurance vs. Public cost etc.

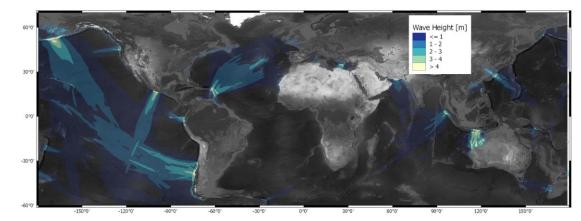
What data?

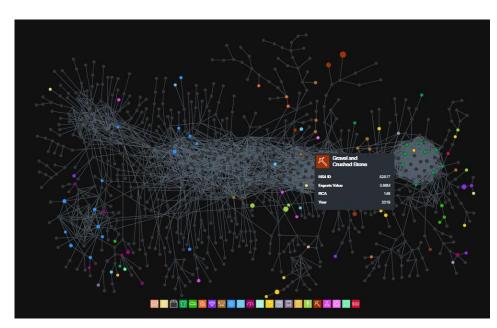

- Through previous disasters (PDNAs, DALAs)
- Economic surveys
- Risk Assessments
- <u>Capital Stock Models</u>
- Official Govt. Lists
- Tender Data
- Valuations

Criteria for comparison: Historic Data Benchmarking

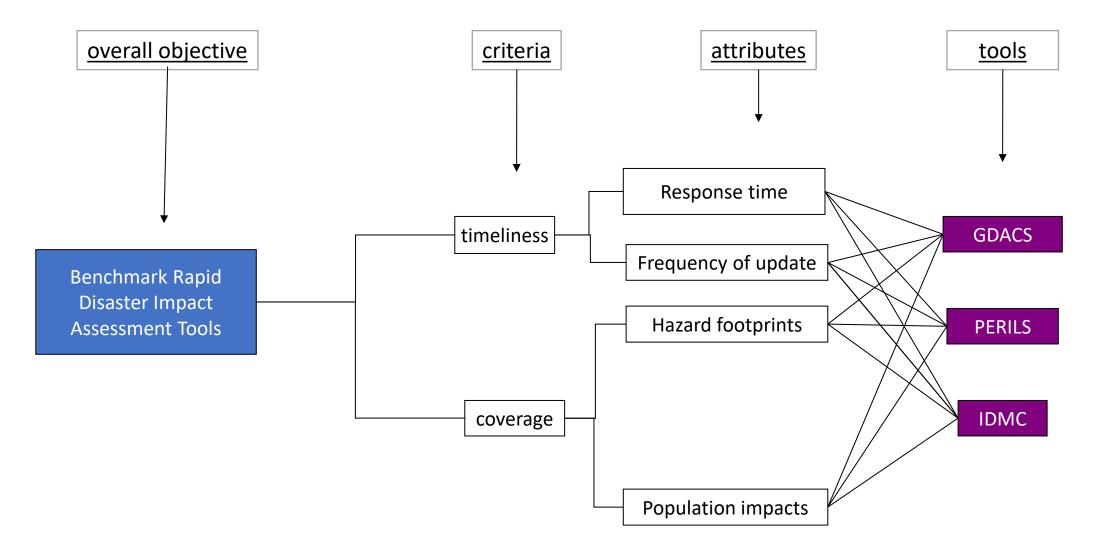
Historical Damage Data

- Historical damage data, Local databases such as AFAD-RED, TABB, Desinventars etc. etc.
- European scale databases (HANZE, EEA, etc.)
- Global Internal Displacement Databases
- Global Damage and Loss Databases (CATDAT, EM-DAT, MunichRe, SwissRe, etc.)


What data?


- Past event losses
- Hazard Footprints
- Where did the past events occur?
- What were the conditions back then?
- Was the built stock the same as now?
- Is this data complete?

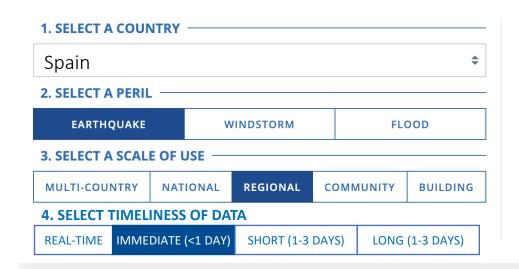
- What is each portal counting?
- What is the purpose, and which can be used? i.e. agricultural risk portals like WFP etc.


Developing a Decision Support System (DSS) for Benchmarking Rapid Post Disaster Assessments Tools

Benchmark and evaluate rapid post-disaster impact assessment tools to enhance EU Civil Protection's decision-making during disaster response.

- Develop criteria to assess tool suitability across hazards, geographic areas and response requirements.
- Create a Decision Support System (DSS) to help prioritize tools and datasets based on operational needs and expert input.

Problem Structuring aims at hierarchically modelling the decision criteria


	Category	Criteria	Attributes for Benchmarking and Ranking							
	Timeliness	Response Time Frequency of Update Data Latency	Immediate (0–24 hours), Short-Term (1–3 days), Medium-Term (4–10 days), Long-Term (>10 days) Real-Time, Periodic (Hourly/Daily), Event-Triggered, On-Demand Low latency (data available within minutes), Medium latency (within hours), High latency (days)							
Characterize										
different rapid	Coverage	Spatial Scale of Analysis Damage Categories	Full Disaster Area, Extensive, Moderate, Limited People (fatalities, casualties, missing, need assistance), Environment (damage to sensitive areas, agricultural damage),							
damage assessment		Hazard Types	Economy (direct damage, indirect losses, economic power loss), Infrastructure (buildings, hospitals, schools, roads, bridges, water, power), Intangibles (public security, political implications, cultural values) Earthquakes, floods, fires, storms, multi-hazard capability							
tools as a score		Exposure Elements Socio-economic Data Field Data Integration	Population, buildings, critical infrastructure, transportation, agriculture Demographics, economic losses, income levels, social vulnerability Yes/No integration, frequency of updates, coverage extent, validation process							
based on										
multiple	Quality	Accuracy Reliability	High (validated by multiple sources), Medium, Low (unvalidated or crowdsourced data) High (consistent performance, minimal errors), Moderate, Low (variable or error-prone data)							
categories		Predictive Accuracy Validation Transparency	High accuracy (precise predictions), Moderate, Low (limited or uncertain predictions) Third-party validation, internal validation only, unvalidated Fully transparent (public methodology and sources), Partially transparent, Not transparent							
(Some Example Categories and	Usability	Data Accessibility User Interface Integration Capability Data Format Compatibility	Public access, restricted access, subscription-based access Intuitive, Moderate, Complex (ease of navigation and use under time constraints) High (integrates with other systems easily), Moderate, Low (difficult to integrate) GIS layers, CSV, APIs, other standard formats available							

High-quality maps, dashboards, automated reports, minimal visualization

Data Format Compatibility Reporting and Visualization

Criteria shown)

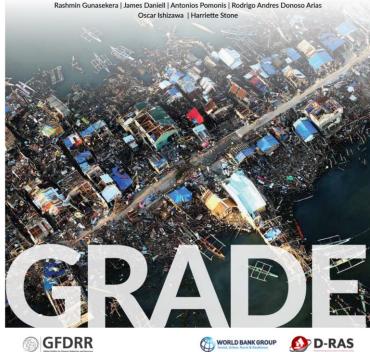
Country-Specific Post Disaster Damage Assessment Tool Recommendations

This page allows you to explore the Rapid Damage Assessment Tools and damage data available for a specific country. The information provided aims to answer the question, 'What is available for country X and what can/can't it be used for?'.

Instructions:

- 1. Select the country, hazard type, and scale (e.g., regional, or communitylevel) that you are interested in.
- 2. Expand the boxes below to see which Rapid Damage Assessment Tools are suitable, how their results compare, and their technical information.

Suitable Uses for the Available Rapid Disaster Assessment Tools and Data


Tool	Spatial Scale of Analysis	Timeliness: Response Time	Timeliness: Frequency of Update	Timeliness: Data Latency	Coverage: Loss Categories	Coverage: Hazard Types		Coverage: Socio- economic Data	Coverage: Field Data Integration	Quality: Accuracy	Quality: Reliability	Quality: Predictive Accuracy	Quality: Validation	Quality: Transparency	Useability: Data Accessibility	Usability: User Interface	Usability: Reporting and Visualization
GDACS		Pre-, near real- time	Event-triggered, Automated	, Low	People-focused, minimal economy	Multi-hazard	Basic infrastructure and population data	Yes	No	Moderate	High	Moderate	Partially validated	High	Public		Comprehensive Mapping and Standalone File
PAGER	Full	Near real-time to short-term	Event-triggered, Automated	, Medium/Low	People-focused	Earthquake	Detailed building, economic and population models	Yes	Partial	Low -> Moderate	Moderate	Low	Internal Validation	High	Public	Intuitive	Standalone File Mapping
PERILS	Full	short-term	Event-triggered	Medium/High	Economy-focused, limited exposure		Detailed economic exposure model:	Yes	Yes	Moderate - > High	High	High	Third Party Validated	Moderate	Subscription-based		Limited visualization and files
RSOE EDIS	Full	Pre-, near real- time	Event-triggered	Low	Basic people and infrastructure		Basic exposivre	Yes	Partial	Moderate	Moderate	Moderate	Partially validated	High	Public	Intuitive	Limited visualization and files
IFRC AlertHub		Pre-, near real- time	Event-triggered, Automated	, Low	Humanitarian, minimal coverage	Multi-hazara	Basiverpostre	In Comments	Partial	Low	Moderate	None	Partially validated	Moderate	Public	Intuitive	Limited visualization and files
Copernicus EMS	Limited/ Moderate	Generally short- term	Event-triggered – manual curation	Low/Medium	People, environment, infrastructure		Building footprints where possible, infrastructure	Yes	Partial	Moderate	Moderate	Moderate	Partially validated	High	Public	Complex	Comprehensive Mapping and Standalone File
UNOSAT	Limited/ Moderate	Generally short- term	Event-triggered – manual curation	Low/Medium	People, environment, infrastructure		Building footprints where possible, infrastructure	Yes	Partial	Moderate	Moderate	Moderate	Partially validated	High	Public	, i	Comprehensive Mapping and Standalone File

📥 DOWNLOAD COUNTRY REPORT

GFDRR THE WORLD BANK

Thank you!!

Methodology Note on the Global RApid post-disaster Damage Estimation (GRADE) approach

Report Available Online at:

MENTI EXERCISE https://www.menti.com/alpzqkc8jxb2

6357 6328

Disclaimer:

• © 2024 International Bank for Reconstruction and Development / The World Bank:

1818 H Street NW Washington DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org

- This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent.
- The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries.