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Abstract: With the aim to have risk mitigation for people and first responders, active remote
sensing standoff detection is a fruitful technology, both in case of accidental (natural or incidental)
or intentional dispersion in the environment of volatile chemical substances. Nowadays, several
laser-based methodologies could be put in place to perform extensive areal monitoring. The present
study regards the proposal for a new system architecture derived from the integration of a low-cost
laser-based network of detectors for pollutants interfaced with a more sophisticated layout mounted
on an unmanned aerial vehicle (UAV) able to identify the nature and the amount of a release. With this
system set up, the drone will be activated by the alarm triggered by the laser-based network when
anomalies are detected. The area will be explored by the drone with a more accurate set of sensors for
identification to validate the detection of the network of Lidar systems and to sample the substance
in the focus zone for subsequent analysis. In this work, methodologies and requirements for the
standoff detection and the identification features chosen for this integrated system are described.
The work aims at the definition of a new approach to the problem through the integration of different
technologies and tools in the operative field experiments. Some preliminary results in support of the
suitability of the integration hypothesis proposed are presented. This study gives rise to an integrated
system to be furtherly tested in a real environment.

Keywords: lidar; standoff system; air pollution remote sensing; unmanned aerial vehicles (UAV);
detection chemical agent; identification chemical agent; volatile organic compounds (VOC)

1. Introduction

The standoff detection and identification of chemical threats is a clever methodology to allow
continuous monitoring from a safe distance of sensitive areas, such as landfill and critical infrastructures.
This solution gives the possibility to have a quick pre-alarm in case of an industrial misoperation,
or tentative destruction by burning of solid illegal wastes, or dispersion in the open air of gaseous ones,
avoiding direct contact of first responders with an unknown release. For several decades, standoff

detection systems that operate in mid-infrared (MIR), the spectral region in which it is possible to
detect chemical threats, have been developed. As reported in studies [1,2], many applications have
been conducted in the field of explosives and chemical agents detection. This technique allows us to
reach higher sensitivity and wider spatial range compared with a technique that works in the other
parts of the spectrum, but it is unable to identify the nature of substances dispersed.
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Moreover, previous studies demonstrated that the Lidar technologies were fruitful both to detect
in real-time particulate matter emitted in an urban area by vehicles, showing high sensitivity and
responsivity [3], then for early detection of forest fires reducing false alarms due to obstacles on
laser path [4,5]. Other studies that apply tunable laser and more complex optic systems such as dial
technology had shown the possibility to identify a wide range of chemical substances but are more
complex and expensive [6]. The Lidar system nowadays can be realized at relatively low cost, but the
weakness of this technique is that it can only identify the macro-class of the substance. Thus, it is
unable to identify a substance or discriminate a single substance in a mixture.

In fact, the currently commercialized laser-based systems are able to detect the putative variation
of the environmental chemical background, due to chemical agents (CAs) such as volatile organic
chemicals (VOC) or toxic industrial chemicals (TIC) in a restricted spatial range, providing an on/off

response type (usually known as trigger systems), but not to perform their identification.
A possible approach to improve the detection capability of MIR Light Detection and Ranging

(Lidar) technique is the creation of a network composed by low-cost detection systems, Lidar-based
already tested in urban [3] and industrial areas to detect pollutants and emissions sources that could
be used as a first alarm. Regarding the MIR Lidar identification limit, a possible solution is to interface
this pre-alarm system, the network of MIR Lidar, with a mobile platform equipped with a set of
sensors. This feature can be sent in the focus area identified by the Lidar network when a punctual
identification is needed, and sampling is required as a confirmation. This allows having a qualitative
and quantitative characterization of the event, aimed at analyzing the pollutants released.

The flying platform will be equipped with specific sensors, able to investigate and discriminate
the nature of the threat for several classes of environmental contaminants. Some studies have been
conducted on the use of gas sensors mounted on a drone [7]. In the field of gas leakage localization with
mobile robots, different approaches have been compared, and a gas sensing system has been developed
and tested for the localization and mapping of the VOC [8]. Several other applications demonstrated
that drones are suitable to be equipped with gas sensors for environmental monitoring and surveillance
operations [9–14]. To the author’s knowledge, it is the first time that the combination of the areal
detection feature of a Lidar network and the punctual identification and sampling capabilities applied
to a drone has been proposed. Therefore, this study is aimed to evaluate a laser-based detection system
integrated with a drone sensor platform to offset the constraint of the single system and improve
environmental monitoring. Furthermore, the drone will be fitted with a sampling system able to collect
evidence from different environmental matrices.

Figure 1 presents the schematic representation of the overall system and of its operational logic.
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The paper is structured as follows: Section 2 of Material and Methods gives an overview of
the different technologies investigated, firstly the Lidar, as a standoff system for environmental
monitoring and its possible use in a network as a method for environmental pollution detection.
In the latter part of Section 2, UAVs state of the art is discussed to define a drone payload integrated
with miniaturized sensors for chemical identification, such as Photo-Ionization Detectors (PID)
and Ion-Mobility Spectrometry (IMS), and miniaturized sampling systems sensors as a method for
pollutants identification. In Section 3, evidence of the preliminary results obtained is illustrated. Finally,
in Section 4, regarding conclusions and future developments, the path for the integration of the whole
system is defined.

2. Materials and Methods

In this section of the paper, techniques devoted to implementing specific functions in the overall
integrated system proposed, such as detection, identification, monitoring, and sampling, were defined
and described. After the description of each technique, the specific experimental setup chosen for
its application in the system was investigated. Firstly, the early warning Lidar chosen as an areal
and extensive detection method was presented. Secondly, an analysis of UAV and miniaturized
environmental sensors identified as features for punctual monitoring was conducted. Finally, a suitable
sampling solution was identified.

2.1. Lidar

As a basic concept, Lidar systems operate on similar working principles as the other 2 more
familiar systems: Radar (radio detection and ranging) and sonar (sound navigation and ranging).
Indeed, also the laser-based system is basically composed of a transmitter and a receiver, but, in the case
of Lidar, a light pulse is transmitted into the atmosphere in the range of optical radiation (usually as
ultraviolet, visible or near-infrared) instead of radio waves (Figure 2). The wavelengths choice for Lidar
is specific for every application, and its range varied from about 250 nm to 11 µm [15]. The light beam is
scattered in all directions from molecules and particulates that beacon crossed through the atmosphere.
The light portion that is backscattered toward the Lidar system is collected by the receiving optic that
measures, as a distance function, the amount of backscattered light [16].
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Those systems could have additional components defined by the type and purpose of the Lidar.
Moreover, it is possible to distinguish between bistatic and monostatic setup (Figure 3).
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Figure 3. Bistatic (a) and monostatic (b) Lidar configurations.

In the monostatic configuration, the transmitter and the receiver are close in contact and aligned.
This configuration is mostly used in modern Lidars in case of their use in the troposphere [17].
Conversely, when they are separated by a distance, the Lidar setup is called bistatic. In this last
configuration, the common use is for long-distance or stratospheric applications.

It should be noted that the geometric arrangement of the emitter and receiver optics determines
the degree of signal compression at distances close to the Lidar and, therefore, it can affect the final
performances of a Lidar apparatus. In fact, at short distances, the laser beam cannot completely
be imaged into the detector, and usually, only a part of the actual Lidar return signal is measured.
Moreover, some practical adjustments can be adopted, such as interference filters placed in front
of the detectors [15,18], to suppress light outside the transmission band, for instance, to reset the
background radiation.

2.1.1. Lidar Standoff Systems for Environmental Monitoring

In the last decades and in particular, after the first active remote sensing application [19] with
pioneering studies of the upper region of the atmosphere, the lasers have played a fundamental
role in environmental monitoring, and, in particular, they opened new fields with regard to remote
sensing of the atmosphere. It is immediately appreciated that the Lidar, as with radar, could provide
spatially resolved measurements in real-time. Lidar methodology has been plenty used to evaluate
and detect profiles of pollutants emission. A system for the analysis of planetary boundary layer (PBL)
dynamics [18] over the Naples city (Italy) was developed employing a self-aligning detection applied
to the Lidar system operating at 351 nm. The same application was carried out in order to evaluate PBL
dynamics in Florence (Italy) [20]. This experiment had been the first example of a long-term monitoring
study of urban aerosols with remote-sensing techniques. About urban pollutants, many studies have
been conducted on UV Lidar measurements for the quantification of mass column density vehicle
exhausts. Several studies reported similar concentration measurements, both in rural areas [21] than
urban areas [22,23] and, moreover, the foundation of an aerosol Lidar network, EARLINET [24].

To sum up, laser-based techniques can be used to observe any density variation along the laser
path as an irregularity on backscattered signals; variation that could be caused by the emission of
pollutants in the atmosphere either by industrial releases. Because of these pieces of evidence, in recent
time, the first use of plume automatic tracking has been proposed [25], for the evaluation of the
particulate concentration and/or density variation as a function of the range/altitude of the ground with
the capability to estimate the plume shape and its form. Those latest results showed the suitability of
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Lidar systems for plume tracking, definitively opening the use of the Lidar system for environmental
monitoring to detect emission sources due to industrial releases and to the forest fires.

2.1.2. Lidar Network as a Method for Environmental Pollution Detection

The proposed system architecture included, as 1 of the 2 frames of the integrated system proposed,
a network of sensors utilizing the Lidar technique, which is suitable for example on large agricultural
or urban areas to monitor the presence of gas or particulate emissions, which could be caused by
releases resulting from the normal ripening cycle of a given crop (e.g., ethylene for some fruit trees or
color changes for “sick” crops) or uncontrolled releases of harmful substances or fire principles, giving,
where necessary, the first alarm in almost “real-time”.

For the network, creation has been chosen as a system developed at the University of Rome “Tor
Vergata” [26] for the monitoring plume evolution from a forest fire and industrial flare. The compact
Lidar system (COLI) consists of a compact, robust, and stable scanning mobile Lidar system based on
monostatic configuration [17]. In Figure 4, the final configuration scheme is reported.
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Figure 4. The technical scheme of the compact Lidar system (COLI) in its final configuration.

With this configuration, it is possible to scan the atmosphere in both vertical (elevation range from
0 to 90 degrees) and horizontal (azimuth range from 0 to 270 degrees) path, using computer-controlled
motors incorporated into the laser-telescope rack. The spatial scan was automized and remotely
controlled by self-designed software in LabVIEW, developed for mechanical handling of laser-telescope
block and a MATLAB data acquisition and processing procedures. Experimental tests carried out to
verify the effectiveness of the presented Lidar system were reported in the following section dedicated
to the results.

2.2. UAV

In the last few years, advancements in the research and technological improvements, have been
pushing the field of aerial robotics. A broad class of flying machines nowadays possess advanced
position sensors and decision-making autonomy to accomplish complex tasks without the need for
any direct human intervention. A wide range of flying platforms of different scale, mechanical
configuration, and actuation principles exist [27,28]. This reflects the fact that for different scales,
physical properties will lead to modified and novel design considerations [29,30] with optimized
endurance, agility, controllability, or perhaps simplicity [31].

Unmanned Aircraft Systems (which includes the UAV itself, the ground control system, camera,
GPS, all the software, payload and skills needed to operate the system, and tools required for
maintenance) (UAS), have drawn increasing attention recently, due to advancements in related
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research, technology, and applications. While having been deployed successfully in military scenarios
for many years, civil use cases have lately been tackled by the robotics research community [27,32].

Given the capability and limitations on the payload, operational range, and power requirements
of UAS, the choice of sensors, processors, and algorithms impose great technical and scientific
challenges. Specifically, UAVs could represent one of the most suitable solutions in terms of system
design, propulsion, perception, control, and navigation. However, different capabilities and properties
arise, depending on their wings or flying mechanism: Between fixed and rotary wing UAV the
appropriate configuration needs to be chosen based on the nature, target, and goals of the activity to
accomplish [33–35].

A general classification of drones is done by their wing type [36]. “Fixed-wing” class has a very
good battery life, can fly at a high altitude, and carry high weight. As for cons, it is expensive, can only
move forward, and requires a good knowledge of aerodynamics for piloting. This category of drones
does not grant the required proximity to operate specific sensors. The drones of the “single rotor”
class, shaped like helicopters, are robust, and, compared to fixed wings, are able to hover and change
direction easily than fixed wings. Moreover, these are less energy-consuming and have a good payload
range. However, the piloting of this category of UAS is difficult, their wide propeller can be dangerous,
and the turbulence could be a limitation for some kind of sensors. The last class is the most widespread
and commercially available one: The “Multirotor drone”. It is available in several configurations, sizes,
and payload options. The main categorization is done by the number of motors [37], a higher number
of rotor foster stability, the most common configuration is the quadri-copter [34], but also hexa-copter
and octa-copter are frequently adopted. This class of drones can carry high payloads compared to
their maximum take-off weight (MTOW). It is easy to maneuver, and, moreover, take-off and landing
are possible almost anywhere. In addition, for a more stable flight, it can avail itself of an Inertia
Measurement Unit (IMU), commonly equipped with gyroscope, compass, and accelerometer on the 3
axes. All these features allow the required proximity for the employment of chemical sensors and air
sampling systems [38–40].

The advancements in the field of microprocessors, miniaturized sensing, as well as actuator
efficiency and technologies downscaling, greatly improves the development of aerial robots. Moreover,
the possibility to have autonomous guided UAS has to be considered, with the opportunity to proceed
autonomously with a predetermined path and objectives based on the route descending from the
alarm triggered by the Lidar. It is possible to conclude that in many cases, UAVs are more suitable
with respect to a manned aerial vehicle, both in terms of cost and usability [38,39,41].

2.2.1. UAV with Integrated Payload

During recent years, we are withstanding constant examples of the development and diffusion of
countless new uses of UAV in civil and military worlds, such as aerial photography, express shipments,
and geographical mapping of inaccessible places. Furthermore, drones equipped with thermal sensors
are nowadays almost currently used for search and rescue operations and collection of information
during disaster management by first responders.

To fulfill the task of environmental monitoring, a flying platform must be equipped with several
components to detect, identify, and possibly quantify the contamination occurred. Moreover, to confirm
the assessment of the substances involved in the release, it is preferable also to foresee a sampling
system for different kinds of substances within several matrixes.

One of the crucial aspects for monitoring of accidental or intentional release in the environment is
the timing. In fact, once the release has been noticed, several preliminary activities to grant access to
the hotspot must be completed. During this time, which may last for hours or days, the loss of evidence
about the dynamics of the accident may occur, especially in case of strongly volatile substances.
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2.2.2. UAV with Integrated Sensors as a Method for Pollutants Identification

As we saw in the previous Lidar sections, the use of the Lidar system is not suitable to identify
the substance released in the atmosphere. The idea behind this project is to combine the Lidar system
for the areal monitoring and detection, with a secondary sub-system, an equipped drone, that acts as a
sensor platform for the in-situ identification, monitoring, and sampling of the emission source and
plume [8,9].

The system requirements for the specific objective of this work have determined the platform
choice. To lower the distance from the target and have an effective identification of the substance,
the drone must be able to perform a high proximity flight to the release point identified from the
Lidar. Furthermore, other crucial requirements are payload, energy consumption, flight autonomy to
accomplish the mission, and stability to grant sensors operability. With these premises, the drone most
suitable is a rotatory wing. In several previous studies, this configuration has been proven to give the
right balance between autonomy, payload, and stability [8,10,41,42].

From the piloting point of view, to avoid the necessity of a professional aircraft pilot has been
chosen to employ a mini-micro UAV category (maximum take-off weight MTOW: 25 kg) as the most
suitable solution.

2.2.3. Miniaturized Sensors and Sampling Devices for Chemical Identification

In the wide range of possibilities offered by the available working principles for chemical detection,
2 different technologies (PID and IMS) have been explored for this sub-system. By coupling those 2
working principles, it is possible to perform a qualitative and a quantitative assessment of the detected
release jointly. Indeed, the first one put in place a working principle chosen for its reliability in assess
concentration in the open air, its sensitivity, low weight, and low cost. The second one has been
signposted for its capability to perform identification, with a given certainty at least for the class of
chemical substances.

Other instruments, based on different working principles, were not investigated because they
have been deemed too heavy or voluminous to be integrated on a mini category drone. Other ones
were not considered because too expensive or not compatible with possible releases of combustible or
explosive substances, for which the detector could become an ignition point.

For what regards the most suitable positioning of the sensors on the UAV, our research group was
conducting studies by means of computational fluid-dynamic simulations. These studies evaluated
the best compromise between the drone flyability and the influence that rotors turbulence had on
the detection and identification capability. A specific study on the best sensors location in case of
radioactive release detection had been already published [43], its pieces of evidence could be extended
to the evaluations that have to be conducted about particulate matter pollution. A study about the
evaluation of the best position of sensors for chemical detection dispersion is under conduction.

Photo-Ionization Detectors (PID)

The first working principle chosen for this application is photo-ionization detection (PID).
Detectors using PID are effective in detecting and monitoring numerous hazardous substances and
ware commonly low cost. Moreover, they provide a fast response [44]. Compared to several other
methods of detecting dangerous gases available on the market, PIDs enclose a combination of response
rates, ease of use and maintenance, compact size, and ability to detect low concentrations, including
most volatile organic compounds (VOCs). PIDs used the working principle of CAs ionization. When the
sample gas absorbs energy by a PID lamp, the gas gets excited, and its molecular content is altered.
The compound loses an electron (e−) and becomes a positive ion [45]. Once this process occurs,
the substance is considered ionized (Figure 5).
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Most substances can be ionized, some more easily than others. The aptitude of a substance to be
ionized is measured as ionization potential (IP) with an energy scale in electron-volt (Ev). This scale
generally ranges from a value of 7 to a value of about 16, the higher the relevant value of IP, the more
difficult it will be to ionize the substance.

To ionize the compound object of the monitoring, PIDs use an ultraviolet (UV) lamp. The lamp,
which is often the size of a common flashlight bulb, emits at a specific voltage, for instance,
10.6 Ev lamp emits enough UV energy to ionize any compound with an IP value less than 10.6 Ev.
By measuring the current produced from the ionized compounds is possible to obtain its concentration
as parts-per-million (ppm).

PID detectors can measure most of the organic compounds and some inorganic compounds,
such as ammonia and sulfuric acid. The best way to calibrate the instrument is to expose it at a specific
concentration of a certain compound, typically isobutylene, selected because it is located at a midpoint
of ionization value for most of VOCs, moreover, it is not flammable or toxic at the concentration
used for calibration. Once the instrument is calibrated, to conduct the measurement and obtain the
concentration for a certain substance is necessary to convert the obtained result with a response factor
(RF), that is compound specific. The RF is the ratio between the sensitivity of PID to the calibration gas
compared to one of the gases that the user wants to measure. By the application of RF, it is possible to
determine the concentration of a large number of compounds with a single gas calibration. Nowadays,
databases of RF for many different chemical substances are freely available [46,47].

PID detectors are widely used in many different scenarios, such as leakage from industrial
equipment, perimetral monitoring of industrial building, or storages whether the nature of spill
is known, delimitation of contaminated areas after an emission, technical investigation after a fire.
Therefore, due to their sensitivity and fast response, those instruments are extremely useful both for
industrial applications for first responder’s usage [48].

Therefore, PID detectors are able to measure the concentration of a known gas dispersed in
the atmosphere, but they do not have identification capability. Indeed, they can be used to give a
significative quantitative notice, but have to be coupled with an instrument with a working principle
for the substance identification (qualitative evaluation).

Few applications have been previously conducted with the integration of those sensors with UAS,
most of them devoted to combustion products [11,49] or particulate matter [12] investigation. For what
regards industrial pollutants, evidence has been found of studies using electrochemical sensors [13],
less sensitive than PID to VOC.

Regarding the future integration with a UAV suitable for this application, it has also been explored
the need in terms of hardware to interface and collect sensor data. Among the PID sensors commercially
available, Alphasense designs and manufactures sensors, such as optical monitors for aerosol and
particulate matter (PM 10/PM 2.5), inorganic gases and VOCs with a limit of detection (LOD) of ppb,
with a complete low-cost and lightweight microcontroller solution to program the sensor, process the
acquired data and communicate it to the control station [50].
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This solution presents a low power demand, both from the sensor than for the microcontroller,
reducing further the overall payload of the drone. Furthermore, it allows the use in parallel an array of
different detectors and features at the same time, controlled by the same hardware.

Among the several families of microcontrollers available on the market, one of the most popular
is the Arduino series. It is mainly based on the Atmel AVR processor and provides many inputs and
outputs in only one self-piece of hardware. Therefore, it offers flexible solutions for different needs,
with a high-level language, cross-platform toolchain, and the capability of interface embedded devices.
Hence, this family of microcontrollers will be the desirable choice to prototype the hardware and
software interface with the sensors chosen for this application.

Ion-Mobility Spectrometry (IMS)

The second working principle selected for this application is Ion-Mobility Spectrometry (IMS).
This is a well-established technology developed during the last century and widely applied in many
types of detection instruments used as portable analyzers.

IMS detectors are selective equipment due to the different effects of the ionization process on
different substances. Thus, they make it possible to discriminate different components in an air sample.
The IMS working principle foresees 2 main stages. The first one is the sample reception and its
ionization in the ionic reactor, with the creation of ions containing analyte molecules or their fragments.
The second stage consists of the ion’s separation, which occurs in the transducer part of the detector
(Figure 6). The separation phase of ions distinguish IMS from other simpler ionization methods,
such as flame ionization detectors (FID) and electron capture detectors (ECD) [51]. The output signal is
generated by the transfer of the ions produced in the reactor towards the collector. This ion movement
take place in a flowing stream of the carrier gas (advection) and in an electric field (drift).

Atmosphere 2020, 11, x FOR PEER REVIEW 9 of 15 

 

(LOD) of ppb, with a complete low-cost and lightweight microcontroller solution to program the 

sensor, process the acquired data and communicate it to the control station [50].  

This solution presents a low power demand, both from the sensor than for the microcontroller, 

reducing further the overall payload of the drone. Furthermore, it allows the use in parallel an array 

of different detectors and features at the same time, controlled by the same hardware.  

Among the several families of microcontrollers available on the market, one of the most popular 

is the Arduino series. It is mainly based on the Atmel AVR processor and provides many inputs and 

outputs in only one self-piece of hardware. Therefore, it offers flexible solutions for different needs, 

with a high-level language, cross-platform toolchain, and the capability of interface embedded 

devices. Hence, this family of microcontrollers will be the desirable choice to prototype the hardware 

and software interface with the sensors chosen for this application.  

2.2.3.2. Ion-Mobility Spectrometry (IMS) 

The second working principle selected for this application is Ion-Mobility Spectrometry (IMS). 

This is a well-established technology developed during the last century and widely applied in many 

types of detection instruments used as portable analyzers.  

IMS detectors are selective equipment due to the different effects of the ionization process on 

different substances. Thus, they make it possible to discriminate different components in an air 

sample. The IMS working principle foresees 2 main stages. The first one is the sample reception and 

its ionization in the ionic reactor, with the creation of ions containing analyte molecules or their 

fragments. The second stage consists of the ion’s separation, which occurs in the transducer part of 

the detector (Figure 6). The separation phase of ions distinguish IMS from other simpler ionization 

methods, such as flame ionization detectors (FID) and electron capture detectors (ECD) [51]. The 

output signal is generated by the transfer of the ions produced in the reactor towards the collector. 

This ion movement take place in a flowing stream of the carrier gas (advection) and in an electric 

field (drift). 

 

Figure 6. Ion mobility spectrometry (IMS)—operation principle and elements of measurement 

systems. 

The process can generate positive or negative products on the gaseous sample volume 

withdrawn from the detector pump, employing different methods of ionization: Isotopic source 

emitting radiation, by a corona discharge (CD) [52] or UV [53]. 

In case of integration with a UAV, radioactive sources such as ionizing agents are to be avoided, 

due to the regulation connected with aerial transport of dangerous goods [54]. 

Within the commercially available portable IMS detectors that employs corona discharge as an 

ionization method, the SMITH Detection instrument LCD3.3 could be a suitable solution. In a 

previous study, the same technology had been applied to evaluate an airborne methyl salicylate 

spread [14]. This instrument was AA battery-powered and performed continuous sampling and air 

Figure 6. Ion mobility spectrometry (IMS)—operation principle and elements of measurement systems.

The process can generate positive or negative products on the gaseous sample volume withdrawn
from the detector pump, employing different methods of ionization: Isotopic source emitting radiation,
by a corona discharge (CD) [52] or UV [53].

In case of integration with a UAV, radioactive sources such as ionizing agents are to be avoided,
due to the regulation connected with aerial transport of dangerous goods [54].

Within the commercially available portable IMS detectors that employs corona discharge as an
ionization method, the SMITH Detection instrument LCD3.3 could be a suitable solution. In a previous
study, the same technology had been applied to evaluate an airborne methyl salicylate spread [14].
This instrument was AA battery-powered and performed continuous sampling and air analysis [55].
Selective and sensitive, the IMS, combined with the quantitative response given by the PID, can give a
qualitative answer about the nature of the release.
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Miniaturized Sampling Systems for UAV Application

Technical specifications already spotted for the other sub-systems such as lightweight,
plug-and-play function, low cost, and low energy consumption are still valid guidelines for the
effective sampling system choice. In the field of environmental sampling, many different technological
solutions are commercially available for the collection of significant and representative specimens.
The main aim is to bring back a withdrawal to a laboratory from the location noticed by the Lidar
network as the source of release and recognized from the other instruments integrated into UAS for
the characterization and confirmation of the evidence. Assuming that the task will be absolved by
the design of new equipment, it is proposed to realize a multi-sampling system working in parallel
consisting of a device simultaneously CAs or unwanted TICs and particulate matter, preserving the
characteristics of the sample until the time of analysis. The system will foresee specific sectors to
selectively retain different substances, including sintered cartridge sampling systems [56], single-use or
reusable after desorption, with the capability to intake samples from different environmental matrices,
gaseous matrix, and aerosol samples.

Commercially available solutions with the indicated characteristics are air-sampler pumps.
These devices are commonly used as personal equipment for environmental monitoring and providing
low flows from 20 to 500 mL/min for gas and vapor sampling, with the possibility of Bluetooth interface
to program the sampling at a distance [57]. This equipment, with its restrained weight, commonly
less than 250 g, can employ different sampling media, such as impinger for powder trap or sintered
metal cartridges able to immobilize VOC components and pollutants. The latest configuration gives
the possibility to use a low flow tube holder to have many samples in parallel and have the possibility
to replicate the analysis once the withdrawal is collected from the laboratory.

Regarding the integration of the sampling system to the UAS, the same interface used for PID
detectors, an Arduino microcontroller, can be implemented to control in real-time duration, nature,
and flowrate of the withdrawal.

3. Preliminary Results

This section presents some preliminary tests conducted to verify the functionality and effectiveness
of some subparts of the proposed integrated system. The tests should be intended as the first phase of a
wider testing campaign, which will lead, step by step, to assess the functionality of the environmental
monitoring system as a whole (Lidar + multi-sensor UAV).

3.1. Lidar Test Campaign

Several field test campaigns have been conducted with the COLI system introduced in Section 2.
These experimental works were intended both for the measurement of increasing in particulate matter
due to vehicles [3], then for the detection and topographic identification of pollutant sources [58].
As a result of the first test campaign, a strong linear correlation of PM concentration levels has been
evidenced between the laser-based detector and conventional monitoring station, with the possibility
to reconstruct temporal maps of the monitored emissions.

In the second experimental campaign, a controlled fire was produced by the combustion of
vegetables in a chimney located in an industrial area. The COLI system was sited at a distance of about
400 m. The result of the temporal evolution of smoke plume emission by the described sources is shown
in Figure 4 present in [59] where COLI signal’s temporal maps vs. space and time acquired. Each scan
has been reported in both the Cartesian (left side) and polar (right side) diagram. The red dotted boxes
highlight the increase of backscattering level linked to the smoke fluctuations. The position change of
red spots from the source of smoke even hundreds of meters is possibly due to wind blowing from
North-West. This latter field tests demonstrated the capability of Lidar systems and, in particular of
mini-Lidar COLI, to perform real-time assessment of tenuous smoke behavior in the free environment
for a 1.5 km range.
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3.2. Multisensor Drone Test Campaign

Preliminary field tests have been conducted to assess the behavior of LCD3.3 detector on a
rotatory wing UAS (Figure 7). Di-propylene glycol monomethyl ether [60] in the open field has
been used to activate the GB (Whereas GB is the NATO acronym that identifies sarin nerve agent,
an organophosphate characterized by high volatility) [61] agent channel of the sensor, the one devoted
to organophosphates. These compounds are commonly used in agriculture as insecticides, but when
used in concentrations exceeding the limit permitted by law, they can injure human health.
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Figure 7. (a) The field test campaign arrangement; (b) the screen view of LCD3.3 detector on the alarm.

Connecting the instrument to a personal computer, it was possible to download the data-logs
recorded every time an alarm had been activated. Figure 8 is the outcome of the data acquisition
software Trimscan used to acquire results from the instrument. The spectrum plot and the spectrum
data showed, for a single IMS channel, the peak position (drift time) on the spectrum giving note
about the nature of detected CA. As it can be seen, the selected IMS instrument, that is commonly
used for manned application by first responders and armed forces specialists, once integrated to a
UAS, gave a good response in terms of detection. With a comparison of the altitude of the peak of the
detected substance with the Reactant Ion Peak (RIP) was possible to give a rough quantification of the
concentration of the agent in air.
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4. Conclusions and Future Developments

At a time in history when we are witnessing malicious actions and accidents against the
environment, the main objective of this research proposal is to develop a flexible, low-cost package,
easily deployable in several scenarios. The overall layout has been conceived for a possible application
to industrial contexts, critical infrastructures, landfills to be monitored, avoiding the illegal spillage of
dangerous substances, or the attempt of destruction by fire of unauthorized wastes. The possibility
of interfacing and intercommunicating different subsystems, each of which has a specific function,
and broadens the range of possible missions to be carried out.

By going through the various subsystems illustrated, a low-cost network of Lidar sensors provides
constant areal monitoring of large spaces and is responsible for raising an early alarm of a deviation
from normal conditions. With this trigger, the UAV, equipped with proper sensors, is activated and
sent in the location assessed by the laser-based coverage to be the origin of the release.

The two detection techniques identified to be suitable for this integration, PID and IMS, offer a
good compromise between the several operational requirements pointed out. Indeed, their coupling is
possible to perform, with good confidence, a quantitative (concentration with PID), and a qualitative
(identification with IMS) measure of the detected release.

Moreover, the inclusion of a sampling system on the UAV makes it possible to collect significant
samples for subsequent laboratory analysis and confirmation of the previous results obtained from
field measurements.

In order to validate the goodness of the overall integrated configuration hypothesis experimentally,
several test campaigns will be designed and carried out. The first group of measurements has already
been conducted and was finalized to check the proper functioning of detection and identification
features apart, giving the following preliminary achievements.

From the performed test with the COLI apparatus, it can be concluded that it represents a smart,
compact, and low-cost standoff detection system. To control large critical areas, expected to be subject
to aerial contamination and particulate matter spread, it is possible to use multiple COLI systems by
integrating them into a network with a given mesh.

The preliminary tests conducted on the equipped flying platform give the evidence that the
hypothesis of integration of the chosen instruments is suitable for this application and opens the
horizon to new possible experimentations. Thus, the flying platform equipped with a light and low-cost
payload that integrates sensors and sampling systems deployed on the emission site localized by the
Lidar network allows solving the capability gap of Lidar in substances identification.

Moreover, the opportunity to collect samples of the environmental contaminants widens the
possibility to confirm in-field measurements with laboratory analysis [62].

Future test campaigns will be conducted to assess the suitability of the integration of PID sensors
and drones and to evaluate the interface of the Lidar network and the fully equipped drone.

Another crucial aspect to investigate is the position of the sensor on the UAS that has to
be optimized in order to enhance detection and identification capabilities. A set of numerical
fluid-dynamics simulations have already been conducted [43] and will execute a new set specifically
dedicated to explore and understand the behavior of rotatory wings UAV turbulence with different
environmental pollutants. This will allow performing in advance troubleshooting procedures to find
out whether a configuration is viable.
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