

InSAR-based operational procedure in the Tuscany Region (Italy)

Camilla Medici, Silvia Bianchini, Matteo Del Soldato

Online Information Day 06/06/2025

Project co-funded by the European Union, Directorate-General for European Civil Protection and Humanitarian Aid Operations (DG ECHO)

UCPM-2024-KAPP-PP - 101193210

University of Florence

What we do - activities & organization

- Earth Sciences Department
- Italian Civil Protection Centre
- UNESCO Chair
 Prevention and Sustainable
 Management of Geo-Hydrological
 Hazards

Continuous PS streaming

From a static historical satellite data analysis to a dynamic continuous monitoring

MTInSAR data operational uses

PS Mapping

PS Monitoring

PS Mapping - Spatial clustering

> Wide area scanning to spot active deformation zones

Deformation maps - Millions of points

High-moving areas - a few thousand points

MAClustering

GIS tool
Spatial clustering of
points with high velocity

PS Mapping - Risk assessment

Clusters classification

Deformation cause Geothermal Slope instability activity Subsidence Mining activity

Municipalities classification

Intersection with

- No elements at risk within the active areas
- Isolated elements at risk within the active areas
- Distributed elements at risk within the active areas
 - Several elements at risks within the active areas

PS monitoring - Anomalies identification

Tuscany region was the first one worldwide to implement in 2016 a **continuous regional-scale monitoring service** based on Sentinel-1 data

Screening of the displacement time series

Automatic identification of **anomalies of movements** - velocity variations greater than 10 mm/year in a time interval of 150 days

Not anomalous point

PS monitoring workflow

PS monitoring output

Monthly bulletin with municipalities classified based on the presence or absence of anomalies

Class	Description
1	No anomaly within the municipality
2	At least one anomaly within the municipality
3	At least one persistent anomaly within the municipality
4	At least one persistent and relevant anomaly within the municipality

Information on **persistent** and **relevant** anomalies

Recurring anomaly in the same area or surroundings across subsequent Sentinel-1 acquisitions.

Relevant anomaly which intersects elements at risk.

Operative procedures

Operational example

Operational example

- > Further investigations
 - Building damage assessment
 - Water pumping rates
 - Settlement gauge
 - Topographic levelling
 - Corner reflector
 - Hydrogeological modelling

The integration of multiplatform monitoring data allows the characterisation of an **overexploitation induced subsidence**

Summary

InSAR data for mapping and monitoring ground deformations

Mapping

- Detection of active deformation areas
- Spatial clustering of high-velocity points
- Support for ground movement risk assessment

Monitoring

- Continuous operational service
- Automatic detection of anomalies of movement
- Regular bulletins to inform the in-charge authorities

- Systematic, wide-area, and frequent coverage (6–12 days revisiting time)
- High precision and continuous updates
- Integration with in-situ investigations for validation and mitigation

InSAR data are a key tool for preventing, managing, and mitigating geohazards. They enables reliable, timely, and large-scale monitoring and mapping, essential to support decision-making and prioritise targeted interventions in high-risk areas.

Thank you for your attention!

Camilla Medici, Silvia Bianchini, Matteo Del Soldato

Online Information Day

06/06/2025

Project co-funded by the European Union, Directorate-General for European Civil Protection and Humanitarian Aid Operations (DG ECHO)

UCPM-2024-KAPP-PP - 101193210

